ILVO MEDEDELING nr 165
juli 2014

VALORISATIE VAN GROENTE- EN FRUITRESTSTROMEN: OPPORTUNITEITEN EN KNELPUNTEN
Valorisatie van groente- en fruitreststromen: opportuniteiten en knelpunten

Lectoren:
Het GeNeSys-team: Lies Kips, Bart Van Droogenbroeck, Els Van Pamel en Nathalie Bernaert (ILVO - Technologie & Voeding), Emely Hanseeuw en Els Vanderperren (ILVO - Dier), Jonas Van Lancker en Koen Mondelaers (ILVO - Landbouw & Maatschappij), Jarinda Viaene en Bert Reubens (ILVO - Plant)

Met dank aan alle stakeholders die input geleverd hebben bij het tot stand komen van dit document en het verdere verloop van het project.

ILVO MEDEDELING nr 165
juli 2014
ISSN 1784-3197
Wettelijk Depot: D/2014/10.970/165
INHOUD

1. Probleemstelling .. 3
2. Inleiding en leeswijzer ... 5
3. Methodologie .. 8
 3.1. Algemene innovatie aanpak binnen het GeNeSys project ... 8
 3.2. Specifieke aanpak in case 1 .. 10
4. Rol van tuinbouwreststromen in de bio-economie en introductie van de case .. 11
5. Definities en verschillende categorieën van tuinbouwreststromen .. 14
 5.1. Oogstresten ... 16
 1. Kwantitatieve gegevens .. 16
 2. Huidig gebruik ... 17
 3. Interesse stakeholders ... 18
 5.2. Doordraai: verliezen ter hoogte van de groente- en fruitveilingen ... 18
 1. Kwantitatieve gegevens .. 18
 2. Huidig gebruik ... 19
 3. Interesse stakeholders ... 21
 5.3. Productieverliezen in de verwerkende industrie ... 21
 1. Kwantitatieve gegevens .. 21
 2. Huidig gebruik ... 22
 3. Interesse stakeholders ... 23
 5.4. Tussentijdse samenvatting van de belangrijkste bevindingen .. 23
6. Huidige valorisatietrajecten .. 24
7. Potentiële afzetmarkten van eindproducten afgeleid van reststromen .. 28
 7.1. Voeding .. 28
 1. Voedingsvezels ... 29
 2. Eiwitten ... 31
 3. Secundaire metabolieten .. 32
 7.2. Voeder ... 33
 7.3. Farmaceutica en cosmetica .. 35
 7.4. Natuurlijke biociden .. 36
 7.5. Materialen en chemicaliën .. 37
 7.6. Compostering en vergisting ... 40
 7.7. Tussentijdse samenvatting van de belangrijkste bevindingen .. 40
8. Organisatie van de supply chain... 42

8.1. Evaluatie van vier verschillende organisatievormen.......................... 42

1. Mobiele verwerking van reststromen door een zelfstandig verwerker....... 42
Verwerking van reststromen door een groente- en/of fruitveiling 43
Verwerking van reststromen door een coöperatie van producenten van reststromen ... 43
Verwerking en vermarkting van reststromen door een producent van reststromen 44

8.2. Tussentijdse samenvatting van de belangrijkste bevindingen........... 45

9. Wet- en regelgeving relevant bij de valorisatie van reststromen 46

9.1. Algemene wetgeving rond materialen, afval en bijproducten 46

9.2. Levensmiddelen ... 48

9.3. Novel Foods ... 49

9.4. Voedings- en gezondheidsclaims .. 49

10. Knelpunten en opportuniteiten die samenhangen met de valorisatie van
 tuinbouwreststromen .. 51

11. Conclusies ... 55

Literatuurlijst

Bijlage
1. Probleemstelling

In onze huidige samenleving heerst een duidelijk maatschappelijke vraag naar het vermijden en/of reduceren van verliezen in de voedselproductie (Kummu et al., 2012). Recent werd ingeschat dat het globale verlies aan eetbaar voedsel één derde van de voedselproductie bedraagt (1,3 10^8 ton per jaar) (Gustavsson, Cederberg, Sonesson, van Otterdijk, & Meybeck, 2011). Eén van de sectoren waarbij de grootste verliezen optreden is de productie en verwerking van tuinbouwgewassen (groenten en fruit), waar ongeveer 40-50 % verloren gaat doorheen de voedselketen (Njie, 2012; Wageningen UR, 2012). Mede als gevolg van hun beperkt productievolume (in vergelijking met akkerbouwgewassen), hoge vochtgehalte en seizoensgebonden beschikbaarheid kennen deze tuinbouwreststromen tot op vandaag geen of een beperkte, kleinschalige toepassing als onbewerkte component in diervoeding bij een lokale veeteler, als meststof of als grondstof voor energie (OVAM, 2012; Wageningen UR, 2012). Toch beschikken vele van deze restfracties over het potentieel om te leiden tot toepassingen met een hogere toegevoegde waarde in diverse sectoren zoals onder meer voeding, voeringsrediënten, materialen, chemicaliën en cosmetica (Galanakis, 2012). Er zijn reeds een aantal succesvolle industriële valorisatietrajecten van grote landbouwreststromen geïmplementeerd in de markt zoals bijvoorbeeld voor reststromen van graan, bietenloof en gras (Annevelink & Harmsen, 2010). Voor tuinbouwreststromen zijn deze industrieel succesvolle trajecten echter beperkt. Hoewel veel onderzoek gebeurt rond de valorisatie van deze stromen die resulteren in talloze hypothetische scenario’s, kwalitatieve studies en gepatenteerde processen (Fuentes-Alventosa et al., 2013; Dominguez-Perles, Moreno, Carvajal, & Garcia-Viguera, 2011; O’Shea, Arendt, & Gallagher, 2012), zijn de producten die effectief op de markt zijn en gebaseerd zijn op reststromen beperkt. Galanakis (2012) verzamelde een beperkt aantal uitgebouwde octrooien rond groente- en fruitreststromen, welke omgezet werden in commerciële toepassingen (Tabel 1). Daarnaast zijn er reeds een aantal spelers op de markt die reststromen als grondstof gebruiken zoals bijvoorbeeld het Nederlandse bedrijf Provalor dat sappen en vezelrijke producten maakt op basis van groenten die afgekeurd werden op basis van uiterlijke kenmerken zoals vorm en kleur. Gelijkaardige bedrijven en producten komen verder in het document nog aan bod.

In dit onderzoek wordt geopperd dat dit beperkt aantal industrieel succesvolle vertalingen mede het gevolg kunnen zijn van de conventioneel gehanteerde onderzoeksaanpak waarbij tijdens de onderzoeks- en ontwikkelingsfase vaak weinig tot geen rekening gehouden wordt met de sociale, economische, institutionele, logistieke en organisatorische aspecten van de innovatie. Onderzoek is veelal enkel toegespitst op één technisch domein dat bovendien vaak slechts op laboschaal uitgevoerd wordt. Aspecten die de implementatie praktisch hinderen zoals de moeilijke bewaring, de variaties in samenstelling van de biomassa en de beperkte volumes van de tuinbouwreststromen kunnen daarom uit het oog verloren worden en de implementatie van het valorisatietraject belemmeren. Daarom wordt in dit project een andere innovatie aanpak
nagestreefd om de kans op het realiseren van een succesvolle innovatie op vlak van valorisatie van tuinbouwreststromen te verhogen. Dit rapport kadert dan ook in deze innovatieve aanpak en dient als een transdisciplinaire screening die vooraf gaat aan het technisch onderzoek. Het heeft als doelstelling de opportuniten en knelpunten voor de herwaardering van tuinbouwreststromen duidelijk te stellen waarop vervolgens relevante onderzoeksvragen gebaseerd worden voor het onderzoek. Op die manier probeert het onderzoek zo goed mogelijk inspelen op huidige noden die huidige implementatie in de weg staan. Op de gehanteerde onderzoeksaanpak wordt dieper ingegaan in hoofdstuk 3.

Tabel 1: Patenten gerelateerd aan de valorisatie van tuinbouwreststromen die zijn omgezet in commerciële toepassingen (Galanakis, 2012)

<table>
<thead>
<tr>
<th>Bron van voedselverlies</th>
<th>Resulterend product</th>
<th>Gebruik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citruschil</td>
<td>Suikersiroop</td>
<td>Natuurlijke zoetstof en smaak in sappen</td>
</tr>
<tr>
<td>Afvalwater van olivenverwerking</td>
<td>Fenolische componenten en voedingsvezels</td>
<td>Bewaarmiddel in bakkerijproducten</td>
</tr>
<tr>
<td>Tomatenafval</td>
<td>Lycopeen</td>
<td>Kleurstof en antioxidant in de voeding met werking tegen kanker en cardiovasculaire ziektes</td>
</tr>
<tr>
<td>Appel pomace</td>
<td>Voedingsvezels</td>
<td>Voedingssupplement of calorie-arm bulk ingredient in voeding</td>
</tr>
<tr>
<td>Granaatappel (schil en zaadhullen)</td>
<td>Ellaginezuur en punicalagine</td>
<td>Antioxidant in voedsel en cosmetica</td>
</tr>
<tr>
<td>Druiven- en veenbes zaden</td>
<td>Proanthocyanidine</td>
<td>Kleurstof in sojasaus</td>
</tr>
</tbody>
</table>
2. INLEIDING EN LEESWIJZER

Dit onderzoek kadert in het ILVO-project GeNeSys. GeNeSyS staat voor Gebruik van Nevenstromen als Systeeminnovatie en is een Gecoördineerde Actie tussen de vier afdelingen binnen ILVO. Binnen het GeNeSys-project wordt onderzoek gedaan naar innovatieve technieken om nevenstromen uit de landbouw- en visserijsector maximaal te valoriseren. Het onderzoek is opgesplitst in drie technische doctoraatcases, overkoepeld door een vierde doctoraat over systeeminnovatie (Figuur 1).

Figuur 1: Overzicht GeNeSys-project
Een **eerste case** is opgebouwd rond het valoriseren van plantaardige reststromen waarbij gekeken wordt hoe deze stromen gestabiliseerd kunnen worden en hoe ze vervolgens een zo hoog mogelijke waarde kunnen creëren in diverse sectoren. Een **tweede case** onderzoekt de valorisatiemogelijkheden van ‘discards’ of teruggooi uit de visserij, die binnenkort verplicht zullen moeten worden aangeland. De **derde case** gaat na wat de mogelijkheden zijn om reststromen te composteren. Voor meer specifieke info over de twee andere cases verwijzen we graag naar *ILVO-mededelingen 166*¹ en *167*². Om te garanderen dat het onderzoek praktijkrelevant is en dat de resultaten makkelijker hun weg vinden naar de praktijk, wordt binnen het project een onderzoeksaanpak gevolgd die reeds vanaf de start van het onderzoek de ideeën, vragen en bedenkingen van de supply chain partners mee in rekening neemt. Dit moet ervoor zorgen dat het onderzoek maatschappelijk relevant is en snel zijn ingang vindt in de praktijk. Deze onderzoeksaanpak werd ontwikkeld binnen het **socio-economische** onderzoek en wordt uitvoerig beschreven in *ILVO-mededeling 164*³. Concreet wordt rekening gehouden met ondersteunende innovaties in het productieproces, de marktomgeving, de beleidscontext, de keten en de resulterende samenwerkingsvormen. Het GeNeSys-project voegt daarom aan de inhoudelijke doelstelling (een duidelijk betere valorisatie bereiken van plantaardige en dierlijke reststromen aan de hand van drie technische doctoraten) een methodologische doelstelling toe: het ontwikkelen van instrumenten voor het uitvoeren van succesvolle systeeminnovaties.

De eerste stap bij de technische doctoraten is een **idee-ontwikkelingsfase** met de bedoeling het onderzoek in een juiste, relevante richting te sturen. In deze voorbereidende screeningsfase wordt zowel nagedacht over het innovatiedoel (rond wat kunnen we werken?), als het sociale aspect (met wie kunnen we werken?). Deze idee-ontwikkelingsfase gaat vooraf aan het technisch onderzoek en heeft als doelstelling de opportuniteiten en knelpunten voor de herwaardering van tuinbouwreststromen duidelijk te stellen waarop vervolgens relevante onderzoeksvragen gebaseerd kunnen worden voor het onderzoek. Dit doen we door enerzijds de actoren, de instituties en de reeds bestaande netwerken in kaart te brengen en anderzijds na te denken over onderwerpen zoals kennisontwikkeling, marktvorming, technische bottlenecks, legitimatie, mobilisatie van middelen en dergelijke. De resultaten van de idee-ontwikkelingsfase voor de valorisatie van tuinbouwreststromen worden gecommuniceerd in dit document. De gehanteerde methodologie wordt verder uiteengezet in **Hoofdstuk 3** en komt uitgebreider aan bod in ILVO mededeling 164 van het socio-economisch onderzoek. **Hoofdstuk 4** introduceert de case en situeert de valorisatie van tuinbouwreststromen binnen de bio-economie. Vervolgens wordt dieper ingegaan op de

¹ **Valorisatie van nevenstromen in de Visserij: knelpunten en opportuniteiten**

² **Composteren als valorisatievorm van reststromen in de Vlaamse land- en tuinbouw: knelpunten en opportuniteiten**

³ **Innoveren in de bio-economie: Innovatieproces en netwerken doorgelicht**
beschikbaarheid van de tuinbouwreststromen (Hoofdstuk 5), de huidige toepassingen (Hoofdstuk 6) en een aantal mogelijke afzetmarkten (Hoofdstuk 7). In Hoofdstuk 8 worden een aantal verschillende implementatie scenario’s geïdentificeerd die beschrijven hoe dergelijke valorisatietrajecten er in de praktijk kunnen uitzien met bijhorende kansen en risico’s. Tot slot wordt de wetgeving rond valorisatie in de voedingsindustrie dieper uitgewerkt en worden een reeks aan opportuniteiten en werk- of knelpunten die spelen op diverse vlakken bij de valorisatie van reststromen gesynthetiseerd (Hoofdstukken 9 en 10).

De tekst in dit rapport omvat een aantal duidingen (in afzonderlijke tekstboxen) en een samenvatting van de verzamelde informatie. Bepaalde stellingen en uitspraken geven de mening weer van individuele stakeholders en stroken daarom niet noodzakelijk met het oordeel van de onderzoekers of met de realiteit. Het is ook niet onze ambitie om in deze tekst een allesomvattend overzicht weer te geven van alle mogelijke reststromen en hun valorisatiemogelijkheden. Het document biedt eerder een beeld van het huidige speelveld rond valorisatie van reststromen met een niet-limitatief overzicht van de opportuniteiten en problemen die zich hierbij voordoen.
3. Methodologie

3.1. Algemene Innovatie Aanpak Binnen Het GeNeSys Project

Het ontwikkelen van innovaties is een complex proces omdat het implementeren van een vernieuwend concept vaak verschillende (ingrijpende) veranderingen vereist in verschillende dimensies van het bestaande socio-technische systeem. Deze dimensies zijn door Geels ingedeeld in zes categorieën: gebruiken van de klanten, wetenschap, technologie, cultuur, beleid en industrie (Geels, 2002; Geels & Raven, 2006; Geels, 2006). Binnen het GeNeSys-project wordt de SIC-aanpak gevolgd, kort voor System Innovation Cycle, een model dat is ontwikkeld binnen het holistische innovatiesysteemparadigma (ILVO mededeling 164). De SIC-aanpak en het daaraan gekoppelde innovatiemodel beschrijft drie belangrijke basiseigenschappen van het innovatieproces. Vooreerst verloopt innovatieonderzoek best transdisciplinair. Dit houdt in dat door de complexiteit van innovaties, deze moeten bekeken worden vanuit verschillende wetenschappelijke disciplines en ook kennis vanuit de praktijk moet worden geïntegreerd om zowel de multidimensionale uitdagingen die zich stellen te identificeren als oplossingen voor die uitdagingen te formuleren en uit te voeren (Pohl, 2008; Hadorn, Bradley, Pohl, Rist, & Wiesmann, 2006; Pohl, 2005; Pohl, 2011).

De nodige transdisciplinaire kennis binnen één organisatie ontwikkelen, is te complex en kost bovendien te veel middelen (Van Haverbeke & Cloodt, 2006). Daarom is de tweede belangrijke eigenschap binnen het SIC-model de open, participatieve aanpak van het project. Samenwerken met een innovatienetwerk bestaande uit diverse actoren zoals onder meer concurrenten, toeleveranciers, intermediaire gebruikers, eindgebruikers, sectorassociaties, financiële partners, universiteiten en andere (private) onderzoeksinstellingen, netwerk-organisaties, beleidsorganen, niet-gouvernementele organisaties, consultants en netwerk facilitators, biedt naast toegang tot de nodige multidimensionale kennis van diverse experten ook nog tal van andere belangrijke voordelen. Zo kan samenwerking en participatie leiden tot een verlaging van de financiële kosten per partner, een kortere time-to-market, de creatie van legitimiteit voor de innovatie en de ondersteuning bij aanvoerketen- en marktontwikkeling (Ritter & Gemünden, 2004; Van Haverbeke & Cloodt, 2006; Bruns, Trienekens, Omta, Hamer, & Petersen, 2010; Caird, Roy, & Herring, 2008; Sarkar & Costa, 2008; Rampersad, Quester, & Troshani, 2010; Chesbrough, 2012; Gallagher, Grüber, Kuhl, Nemet, & Wilson, 2012; Holl & Rama, 2012; Sandulli, Fernandez-Menendez, Rodriguez-Duarte, & Lopez-Sanchez, 2012).

Om deze voordelen te maximaliseren, speelt het leerproces dat ontstaat uit de interacties tussen de verschillende samenwerkende partners in deze multi-actor en multidimensionale setting een cruciale rol. Om dit leerproces te stimuleren is een flexibel proces nodig met frequentie iteratie en feedback om fouten te corrigeren en om op onvoorziene uitdagingen in te zetten (Fetterhoff & Voelkel, 2006; Van de Duin, Ort, & Kok, 2007; Bruns et al., 2010; Veldkamp et al., 2009; Gallagher et al., 2012). Dit vormt de derde basiseigenschap van het innovatieproces.
Het SIC-innovatiemodel stelt dus dat een innovatieproces op een (i) transdisciplinaire manier moet gebeuren met (ii) open grenzen die samenwerking tussen diverse stakeholders toelaat, binnen een (iii) niet-lineair, flexibel proces met ruimte voor iteratie en feedback. Een visualisatie van het model is terug te vinden in Figuur 2.

In de huidige conceptualisatie start innovatie vanuit een innovatief idee dat vervolgens ontwikkeld wordt tot een inventie welke op zijn beurt pas een innovatie genoemd kan worden, nadat deze met succes in de markt is geïntroduceerd. Binnen het SIC model zijn de drie hoofdfases, hierbinnen afgelijnd: de idee-ontwikkelingsfase, de inventiefase en de commercialisatiefase (Bruns et al., 2010; Kroon, Hartmann, & Berkhout, 2008; Van Haverbeke & Cloodt, 2006; Bogers & West, 2012; Pullen, de Weerd-Nederhof, Groen, & Fisscher, 2012). Deze fases zijn op hun beurt onderverdeeld in subfases. De idee-ontwikkelingsfase groepeert de fases die in het teken staan van het genereren, ontwikkelen en selecteren van haalbare ideeën voor innovatieprojecten. De fases die vooral als doel hebben om deze ideeën technisch-wetenschappelijk uit te werken, zitten onder de inventiefase. De commercialisatiefase omvat dan weer de subfases die vooral focussen op het vermarkten van de inventie. Ondanks de opdeling in verschillende fases, betekent dit niet dat bepaalde deelaspecten van de innovatie zoals vermarkting pas op het einde van het innovatieproces moeten worden in acht genomen. Zowel de socio-economische als de technisch-wetenschappelijke aspecten moeten op een iteratieve manier van in het begin van en doorheen het beslissingsproces mee in rekening genomen worden. In ILVO-mededeling 164 van Jonas Van Lancker en Koen Mondelaers kunnen nog meer details over de uitwerking van het SIC-model gelezen worden.

Figuur 2: Het SIC-model voor de ontwikkeling van complexe radicale innovaties
Binnen het GENESYS project werd een eerste idee-ontwikkelingsfase afgerond. Doorheen deze fase werd op een iteratieve manier enerzijds op zoek gegaan naar haalbare ideeën voor innovatie en werd anderzijds het innovatienetwerk rond dit project ontwikkeld. Een brede interne en externe scan op basis van Figuur 3 werd uitgevoerd met als doel knelpunten, opportuniteiten en ideeën te identificeren binnen de doelstelling van het project. Dit is gebeurd met behulp van sterke stakeholderparticipatie. Vanuit deze scan zijn dan een aantal innovatiepistes ontwikkeld, opnieuw in samenspraak met stakeholders. In de volgende paragraaf wordt de gebruikte methode voor dataverzameling in deze specifieke case toegelicht.

3.2. Specifieke aanpak in case 1

In deze technische case rond valorisatie van tuinbouwreststromen wordt een beeld gegeven van het huidig aanbod aan tuinbouwreststromen in Vlaanderen en van de huidige bestemmingen. Tevens werd getracht tijdens deze idee-ontwikkelingsfase de verschillende knelpunten en opportuniteiten die de mogelijke valorisatiemogelijkheden beïnvloeden, weer te geven.

Dit rapport biedt een bondige samenvatting van de informatie die werd verzameld door middel van bedrijfsbezoeken, studiedagen en interviews bij ruim 50 stakeholders uit verschillende stakeholdergroepen (beleid, verwerkers, leveranciers van grondstoffen, afnemers, onderzoek- en praktijkcentra). Zo werden verschillende afdelingen van de Vlaamse overheid ondervraagd, werd er samengewerkt met diverse andere projecten, werden een viertal overkoepelende sectororganisaties gecontacteerd alsook vier individuele telers, drie proefcentra, drie veilingen, een vijftal verwerkende bedrijven en diverse andere stakeholders. Deze informatie werd afgetoetst met wetenschappelijke inzichten en literatuuronderzoek.
4. Rol van tuinbouwreststromen in de bio-economie en introductie van de case

De tuinbouw is een belangrijke troef van Vlaanderen. Hoewel ze slechts 8% van de totale oppervlakte cultuurgrond inneemt, is ze verantwoordelijk voor 28% van de totale landbouwproductiewaarde (Bernaerts et al., 2012). Het belang van deze sector voor Vlaanderen, in combinatie met de moeilijke valorisatie van de natte, verspreid voorkomende reststromen en de overkoepelende nood aan valorisatie van voedselverliezen vormt de drijfveer om hierop te focussen binnen dit onderzoek. Theoretisch gezien bestaat de tuinbouwsector uit groenteteelt, fruitteelt en sierteelt. In dit onderzoek wordt sierteelt echter buiten beschouwing gelaten.

Om deze biomassa zo optimaal mogelijk te gebruiken, is de waardepiramide maatgevend. Dit cascadesysteem is een prioriteitenvolgorde die kan worden opgemaakt op basis van economische, sociale of ecologische criteria of een combinatie hiervan (Guisson & Cuypers, 2014) en waarin binnen elk niveau andere prijsniveaus, kwaliteitseisen en beperkingen in de regelgeving heersen. De mogelijkheden binnen dergelijke waardepiramide worden dus belangrijke mate bepaald door wet- en regelgeving, alsook door het volume, de beschikbaarheid en de samenstelling van de reststromen, de geografische spreiding, de perceptie van de maatschappij en de gerelateerde kosten en

In dit project wordt echter een cascade gehanteerd die gebaseerd is op de ladder van Moerman en waar voeding bovenaan staat, zoals weergegeven in de onderste piramide in Figuur 5 (OVAM, 2012). De ladder begint eigenlijk bij preventie, dus het vermijden van reststromen. Wanneer er toch reststromen ontstaan, dienen deze bij voorkeur gevaloriseerd te worden binnen de voedingsketen, waarmee een duurzame voedingscyclus gegenereerd wordt. In tweede instantie wordt gestreefd naar toepassing in de veevoeding gezien de biomassa zo onrechtstreeks opnieuw in de voedingsketen terecht komt. Nadien kunnen de overblijvende bruikbare restproducten de trappen van de waardepiramide afdalen en gevaloriseerd worden als grondstoffen in diverse industrieën zoals cosmetica en materialen. In de volgende trap in de waardepiramide kunnen ze een rol spelen in de compostering en/of vergisting en tot slot kunnen ze gebruikt worden als duurzame energiebron tot de bijproducten geen verdere waardevolle toepassing meer hebben (Guisson & Cuypers, 2014).

Figuur 5: Voorbeeld van twee verschillende waardepiramides binnen de bio-economie (gebaseerd op Bex & Blank, 2013 en OVAM, 2012)
Deze visie sluit ook aan bij het standpunt van OVAM en Fevia en werd voorgesteld in de studie ‘Voedselverlies in Ketenperspectief’ (OVAM, 2012). Het cascade principe is bovendien opgenomen in het gezamenlijke advies van SALV en MINA-raad. Het is richtinggevend voor het duurzaam gebruik van biomassareststromen en is gericht op maximale economische en maatschappelijke voordelen, binnen de draagkracht van het leefmilieu (OVAM, 2014a). Verbreding richting niet-voedingstoepassingen biedt kansen, maar dient weloverwogen te gebeuren met een afstemming tussen de diverse afzetmarkten. Bovendien dienen randvoorwaarden gerespecteerd te worden zoals het behoud van de bodemkwaliteit door een deel van de gewasresten in te werken in de bodem of ze achteraf terug op het land te brengen onder de vorm van een bodemverbeterend middel.

De uitdaging ligt dus in het realiseren van een optimale herwaardering van de biomassa door het stapsgewijs benutten van de energie- en materiaalinhoud van biomassa zodat alle delen van de plant optimaal benut worden (bioraffinage principe) (Mathijs., Nevens, & Vandenbroeck, 2014). Er moet dus gestreefd worden naar een optimale oplossing (zo hoog mogelijk op de ladder van Moerman) die voor een combinatie van afzetkanalen perspectieven biedt en rendabel is.

In overeenstemming met de ladder van Moerman, ligt het accent in dit rapport dus voornamelijk op mogelijkheden voor tuinbouwreststromen in de voeding. Een aantal andere mogelijke toepassingen worden ook beknopt afgetoetst en weergegeven. In het praktisch onderzoek zal samengewerkt worden met de derde technische case om te onderzoeken of de tuinbouwresten na hoogwaardigere valorisatie, nog gecomposteerd kunnen worden.
5. DEFINITIES EN VERSCHILLENDE CATEGORIEËN VAN TUINBOUWRESTSTROMEN

De focus in deze studie ligt op de tuinbouwreststromen. Vooral eerst ingegaan wordt op de verschillende categorieën van deze reststromen, worden in box 1 eerst de verschillende termen samengevat die momenteel circuleren. Er bestaat immers geen algemeen aanvaarde of bindende terminologie. In dit verslag zal vanaf nu consequent met de term reststromen gewerkt worden, omdat deze term zowel de niet-eetbare biomassa als de eetbare biomassa omvat.

Box 1. Overzicht van de definities rond verliezen van voedselgrondstoffen-en producten

Voedselverliezen: alle eetbare biomassa van voedselgrondstoffen en voedselproducten die verloren gaat voor menselijke consumptie (OVAM, 2012).

Reststromen: overkoepelende term van nevenstromen en voedselverliezen die in dit document zal worden gehanteerd, zoals ook gehanteerd wordt door OVAM. Deze worden ook soms productieresidu of organische nevenstroom genoemd (OVAM, 2014a).

Voedselverspilling: term die gebruikt wordt om de meest fundamentele vorm van voedselverlies te benoemen, duidend op het verlies dat voorkomt aan het einde van de voedselketen, in de winkel of bij de consument (Njie, 2012; OVAM, 2012).

Bijproducten: worden geproduceerd als integraal onderdeel van het productieproces van het hoofdproduct, maar kunnen met zekerheid en zonder verdere behandeling nuttig worden gebruikt, rechtmatig en zonder ongunstige effecten op het milieu of de menselijke gezondheid (Europese kaderrichtlijn afvalstoffen 2008/98/EG).
In het project werd gestart met het verzamelen van kwantitatieve gegevens van tuinbouwreststromen in Vlaanderen, waarbij gefocust werd op reststromen die vrijkomen bij de productie of de verwerking. De verliezen bij consumptie en tijdens distributie worden hier niet behandeld. De reststromen werden in drie categorieën ingedeeld (i) oogstresten, (ii) verliezen ter hoogte van de veiling en (iii) productieverliezen in de verwerkende industrie. Deze categorieën worden sterk vereenvoudigd aan de hand van Figuur 6 geduid.

De producent van groenten en fruit is de eerste schakel in de beschouwde productieketen. Van daaruit gaat een deel richting de verwerking en een deel richting de versmarkt. Dit laatste kan gebeuren aan de hand van veilingen of directe verkoop aan de markt. Aan de hand van deze ketenopbouw, werden de verschillende reststromen ingedeeld in drie grote categorieën (Figuur 6). Afhankelijk van de productieschakel waarin ze ontstaan, komen deze verliezen namelijk voor onder een andere fysische vorm. Zo zullen in het geval van appels, de oogstresten bestaan uit kleine, geblutste en verkleurde vruchten, terwijl productieverliezen van verwerkers, bijvoorbeeld appelsapproducenten, zullen bestaan uit het persresidu. Verliezen ter hoogte van de veiling op hun beurt zijn de overproductie van marktconforme appels en appels die niet aan de kwaliteitseisen voldoen omwille van afwijkingen zoals bijvoorbeeld kleur, vorm, grootte of schilafwijkingen.

De data zijn tot stand gekomen via interactie met diverse actoren en via literatuuronderzoek. Er is echter een grote variatie in de kwaliteit en de beschikbaarheid van dergelijke gegevens. Daarom dienen deze data zorgvuldig geïnterpreteerd te worden en dienen ze gebruikt worden als een cijfermatige benadering van de voorkomende reststromen. Naast kwantitatieve gegevens werden ook andere criteria onderzocht zoals
onder meer de interesse van stakeholders actief in de sector en logistieke en praktische aspecten. Deze worden hieronder telkens besproken na de kwantitatieve gegevens.

5.1. **Oogstresten**

1. **Kwantitatieve gegevens**

Een eerste categorie aan tuinbouwreststromen bestaat uit oogstresten, die op het tuinbouwbedrijf zelf ontstaan. Dit is enerzijds de blad- en stengelmassa en anderzijds het productieverlies na de oogst dat niet voldoet aan de opgelegde kwaliteitseisen. Daarnaast behoren hiertoe ook de bijproducten van de eerste verwerking op het agrarisch bedrijf zoals bijvoorbeeld witloofwortels of het groene deel van prei. In Tabel 2 wordt een inschatting gegeven van de totale jaarlijkse hoeveelheden verse biomassa (groenten en fruit) die vrijkomen in Vlaanderen. Ter vergelijking worden de data van de akkerbouwgewassen hier ook meegegeven.

Tabel 2: Arealen van akkerbouwgewassen, groenten en fruit in Vlaanderen en corresponderende hoeveelheid oogstresten die hiervan jaarlijks vrijkomen in Vlaanderen

<table>
<thead>
<tr>
<th>Gewasgroep</th>
<th>Areaal</th>
<th>Reststroom (ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akkerbouwgewassen¹</td>
<td>224.428</td>
<td>37%</td>
</tr>
<tr>
<td>Groenten²</td>
<td>31.994</td>
<td>4,5%</td>
</tr>
<tr>
<td>Fruit²</td>
<td>18.729</td>
<td>2,5%</td>
</tr>
</tbody>
</table>

¹Voornamelijk granen, aardappelen en suikerbieten, data op basis van (Bernaerts et al., 2012). ² Waarden van areaal en tonnage reststroom zijn gemiddelden, berekend op basis van GeNeSys database (zie bijlage).

In bijlage is een uitgebreide tabel toegevoegd van de arealen, primaire productievolumes en bijhorende reststromen van de belangrijkste openluchtgroenten, glassgroenten en fruitsoorten in Vlaanderen. Hierbij werd gewerkt met deze gewassen met een minimum areaal van 100 ha of een minimum productievolume van 7.000 ton. Er werd gewerkt met data uit 2010, aangezien de EHEC-crisis in 2011 resulteerde in de vernietiging van grote hoeveelheden biomassa omwille van besmettingsrisico waardoor de data van dat jaar niet representatief zijn voor een doorsnee jaar. De beschreven arealen en tonnages zijn weergegeven voor groenten en fruit bestemd voor zowel de industrie als voor de versmarkt, tenzij anders vermeld. De oogstresten (vb. bladeren, stengels, plantenresten) die hieruit vrijkomen zijn immers dikwijls in beide gevallen identiek, onafhankelijk van de latere bestemming. De productieverliezen (vb. schillen en uitval) die gepaard gaan met de verwerking van de biomassa worden in de onderstaande paragraaf besproken. Tot slot werd ervoor gekozen om te werken met de natte tonnages aan reststromen. Dit gebeurde enerzijds omdat het kenmerkend is voor deze reststromen dat het om grote volumes natte stromen gaat en anderzijds omdat de beschikbare droge stof percentages meestal berekend werden op basis van het primair product en niet op de reststromen, waardoor dit een foutief beeld kan geven. Ter informatie, kan echter gesteld worden dat de meeste
droge stof gehaltes voor tuinbouw(rest)stromen tussen 5 en 20% liggen (CVB, 2007; Souci, Fachmann, & Kraut, 2008).

Puur kwantitatief kan de tabel (in bijlage 2) op 2 manieren worden geanalyseerd. Ten eerste kan een selectie worden gemaakt van de gewassen die de grootste totale hoeveelheid reststromen produceren. Deze worden waargenomen bij kolen (bloemkool, spruiten, witte kool, rode kool, savooikool), prei, erwten, wortelen, bonen, appels, aardbeien, witloofwortelen, selder, spinazie, tomaat, appel en peer (variëren tussen 15.000 ton - 200.000 ton). Dergelijke grote tonnages kunnen het gevolg zijn van grote arealen (ha) en/of grote opbrengsten (ton/ha). Deze data kunnen echter ook geëvalueerd worden op basis van volume reststroom en opbrengst reststroom per hectare (20 – 70 ton/ha). Van de gewassen die op beide parameters hoog scoren kan geconcludeerd worden dat de reststromen meer geconcentreerd voorkomen, hetgeen bij valorisatie logistieke voordelen kan bieden. Dit is het geval voor kolen (spruiten, bloemkool, witte kool, rode kool, savooikool), erwten, selder, prei, wortel, appels, witloofwortel en tomaat.

2. Huidig gebruik
Momenteel worden deze oogstresten vaak ondergeploegd op het land als bemesting, hetzij bij de teler zelf, hetzij bij derden, al dan niet na composteren (Roels & Van Gijsseghem, 2011). Wanneer de oogstresten, doorgaans in het najaar, achterblijven op het veld (vb. bloemkool en selder) of bepaalde delen na het kuisen terug op het veld worden gebracht (vb. groene delen van de prei) mineraliseren ze snel en kan stikstofuitspoeling naar het grondwater optreden alsook gasvormige verliezen (CH₄, N₂O en NH₃) (De Neve & Hofman, 1996). Naast nutriëntenuitspoeling kunnen deze gewasresten ook een risico inhouden gezien ze fungeren als voedingsbodem voor pathogenen. Wegnemen en hoogwaardig valoriseren kan hier dus een oplossing bieden, op voorwaarde dat er op het einde van de cyclus gezorgd wordt voor een alternatieve nutriëntenbron voor de bodem. Zo blijft de kwaliteit van de bodem behouden en wordt de duurzame lange termijn productie van biomassa niet in gevaar gebracht. Hierop wordt dieper ingegaan in case 3 en in het Oogststenproject dat wordt uitgevoerd in opdracht van VLM ‘Onderzoek naar het beheer van oogstresten bij vollegrondsgroenten en mogelijkheden van vanggewassen en teeltrotaties met het oog op de waterkwaliteitsdoelstellingen van het Actieprogramma 2011-2014 (MAP4)’ (UGent, ILVO, BDB, PCG, PSKW, Inagro). In sommige gevallen worden de oogstresten verzameld door de landbouwer voor de lokale veehouder. Dit is bijvoorbeeld het geval voor witloofwortelen die overblijven na de forcerie⁴. Hiervoor krijgt de tuinbouwer slechts een beperkte vergoeding (rond €10 - €15 per 1.000 kg zoals bevestigd door twee lokale witlooftelers). Naast onderploegen en veevoeding, kan een hiervoor vergunde GFT-composteerinstallatie oogstresten composteren. Tot slot is het vergisten van oogstresten momenteel volop in ontwikkeling. Hierbij zijn elementen als

organisch stofgehalte en extra benodigde werkgangen om het materiaal te verzamelen cruciaal voor de finale haalbaarheid.

3. Interesse stakeholders
Uit gesprekken met individuele landbouwers en projectpartners viel een open houding en een sterke interesse af te leiden. Verder werd ook duidelijk dat er een zekere vraag is naar het hoogwaardiger valoriseren van oogstresten. De volumes van reststromen, onder meer kolen (tot 150.000 ton en 200.000 ton voor resp. spruiten en bloemkool), prei (70.000 ton), erwten (70.000 ton), wortelen (70.000 ton) en bonen (70.000 ton), zijn zeer groot en bieden zodoende tal van opportuniteiten. Hierbij dient wel rekening gehouden te worden met de seizoenaliteit waardoor zowel gewas als reststroom vaak slechts op beperkte tijdstippen beschikbaar zijn (reststroom erwt is bijvoorbeeld slechts beschikbaar van juni tot juli). Met deze seizoenaliteit zal echter sowieso bij alle tuinbouwreststromen rekening moeten gehouden worden. Andere nadelen verbonden aan het valoriseren van oogstresten zijn de relatief kleine productieschalen wanneer dit plaatsvindt bij individuele landbouwers en de hieraan gekoppelde beperkte investeringsmogelijkheden wat de implementatie van een hoogwaardig valorisatietraject op deze schaal in de weg kan staan. Coöperaties of samenwerkingsverbanden voor de valorisatie binnen één regio zouden hier een oplossing kunnen bieden, op voorwaarde dat hun activiteiten de kosten van de logistieke organisatie kunnen dekken. Verder bestaat bij de valorisatie van oogstresten het gevaar voor contaminatie met bijvoorbeeld pesticiden, mycotoxines en aarde, wat de chemische en microbiële veiligheid en de verdere verwerking kan belemmeren. Momenteel blijft de biomassa vaak achter op het land waardoor bij valorisatie een aangepaste oogstmachine zal moeten ontworpen worden of een tweede werkgang zal moeten worden ingebouwd. Tot slot zijn de oogstresten een heterogene mix van biomassa waarbij het voornamelijk om blad- en stengelmassa gaat welke op dit moment nog niet geconsumeerd worden. Daarom zou introductie van deze oogstresten in de voedingscyclus beschouwd kunnen worden als een ‘Novel Food’ waarvoor een uitgebreide wettelijke procedure gevolgd dient te worden (zie §9.3).

5.2. DOORDRAAI: VERLIEZEN TER HOOGTE VAN DE GROENTE- EN FRUITVEILINGEN

1. Kwantitatieve gegevens
interveniëren de producentenorganisaties en wordt de overblijvende hoeveelheid officieel eigendom van de overheid en wordt ze uit het circuit gehaald. De producenten van de overschot aan biomassa krijgen in dat geval een vernietigingssubsidie (die lager ligt dan de minimumprijs) om de transport-, sorteer- en inpakkosten te compenseren. Dergelijke interventie vindt plaats om in moeilijke situaties de markt te stabiliseren en een leefbare prijs te garanderen voor de tuinbouwers en veilingen.

Tabel 3: Uit de markt genomen groenten en fruit bij drie grote Vlaamse groente- en fruitveilingen (BIRB 2013)

<table>
<thead>
<tr>
<th></th>
<th>Primaire stroom</th>
<th>Jaar</th>
<th>Totale hoeveelheid natte nevenstroom (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Openluchtgroenten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bloemkool</td>
<td></td>
<td>2012</td>
<td>411.001</td>
</tr>
<tr>
<td>Glasgroenten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aubergine</td>
<td></td>
<td>2012</td>
<td>13.400</td>
</tr>
<tr>
<td>Courgette</td>
<td></td>
<td>2012</td>
<td>1.150.534</td>
</tr>
<tr>
<td>Komkommer</td>
<td></td>
<td>2012</td>
<td>462.421</td>
</tr>
<tr>
<td>Paprika</td>
<td></td>
<td>2012</td>
<td>758.518</td>
</tr>
<tr>
<td>Sla en Andijvie</td>
<td></td>
<td>2012</td>
<td>1.893.571</td>
</tr>
<tr>
<td>Tomaat</td>
<td></td>
<td>2012</td>
<td>501.222</td>
</tr>
</tbody>
</table>

2. Huidig gebruik
Het uit de markt nemen van producten is een crisismaatregel die dienst doet als vangnet voor moeilijke situaties. De instructies voor het uit de markt nemen van producten zijn wettelijk vastgelegd in de Gemeenschappelijke Marktordening (GMO) voor groenten en fruit. Hierin is onder meer de bestemming van deze producten vastgelegd. In de eerste plaats moeten de uit de markt genomen producten ter beschikking gesteld worden van erkende liefdadigheidsinstellingen (type 1, max. 125 kg per begunstigde en per jaar). Indien dat niet mogelijk is voor de volledige hoeveelheid, moeten de resterende

producten via volgende kanalen verwerkt worden: verzorgingsinstellingen (type 2, max. 20% van aankopen van vorige jaar), scholen (type 3, max. 10 kg fruit per leerling per jaar), diervoeding of bemesting (type 4) en compostering (type 5) (Vlaamse overheid, 2012; Roels & Van Gijseghem, 2011).

Ondanks de goede intenties met betrekking tot hoogwaardige valorisatie, dienen deze theoretische richtlijnen in de praktijk echter genuanceerd te worden. Zo verklaarde een grote veiling dat toepassingen als diervoeding of compostering bij hen niet toegestaan worden. Dergelijke partijen dienen daar net als de andere commerciële instellingen via de klok te kopen. Bovendien vermelden ze dat het grootste deel van hun doordraai in de praktijk ondergeploegd wordt op het veld tegen een kleine vergoeding, wat een groot verlies aan potentiële waarde betekent. Deze trend reflecteert zich ook in het gedrag van de andere veilingen zoals aangetoond door de data van BIRB. Deze gegevens geven aan dat er in 2012 in totaal 6.430 ton groenten en fruit via officiële interventie uit de markt gehaald werden in Vlaanderen, waarvan 85% ondergeploegd werd bij lokale landbouwers en slechts 15% (gemiddeld over alle gewassen) opgehaald werd door liefdadigheidsinstellingen (BIRB, 2013). In welke mate dit laatste enkel type 1 omvat of ook type 2 en 3 is onduidelijk.

Verder worden in deze GMO de eisen naar kwaliteit en versheid van de producten uiteengezet. Doordraaigewassen zijn de keurtafel reeds gepasseerd en voldoen dus aan de opgelegde eisen van het Federaal Agentschap voor de Veiligheid van de Voedselketen (FAVV). De kwaliteit en de versheid van de doordraai producten dienen dus aan dezelfde normen te voldoen als deze die gelden in de handel, behalve wat de voorschriften inzake presentatie en aanduidingen betreft. Bovendien moeten ze bij opslag voldoen aan de hygiënevoorschriften. De producten mogen dus los of in grote kisten en zonder sortering naar grootte of gewicht uit te markt worden genomen op voorwaarde dat de minimumeisen van kwaliteitsklasse 2 (kwaliteit, grootte en/of gewicht) in acht worden genomen. Wanneer geen handelsnorm bestaat, dienen ze te voldoen aan volgende minimumeisen: intact, gezond (niet rot), zuiver (nagenoeg vrij van zichtbare vreemde stoffen), vrij van plagen en aantastingen, vrij van abnormale vochtigheid, vrij van vreemde geur/smaak, voldoende ontwikkeld en rijp en beschikkend over de kenmerken van de variëteit.

De veilingen dienen de kwaliteitscontrole op de producten uit te voeren, dienen de producten op te slaan in plaatsen die voldoen aan de algemene voedingsmiddelen hygiëne, dienen bij te houden of de maximale hoeveelheden niet worden overschreden en dienen elke interventie te melden aan de bevoegde nationale autoriteiten, waarvoor ze worden vergoed (Vlaamse overheid, 2012). In opdracht van het Agentschap voor Landbouw en Visserij (ALV) is het Belgische Interventie en Restitutiebureau (BIRB) het controlerende orgaan voor deze interventie.

Naast doordraaigewassen ontstaat er nog een reststroom op de veiling. Deze bestaat uit gewassen die aangevoerd worden door de producent maar die niet voldoen aan de eisen van FAVV. Ze worden bijgevolg negatief gekeurd en worden niet toegelaten op de klokverkoop binnen de veiling. Hiervoor zijn twee mogelijke bestemmingen: ofwel worden
ze gestort op het land samen met de doordraai, ofwel dienen ze opnieuw meegenomen te worden door de producent. In sommige gevallen blijft die reststroom ook gewoon op het bedrijf van de landbouwer. Ondanks het feit dat deze reststroom hier niet exact gekwantificeerd werd, blijken deze volumes ook aanzienlijk te zijn.

3. Interesse stakeholders
Hoogwaardige valorisatie van doordraaiigewassen werd heel positief onthaald op de meerderheid van de veilingen. Het gaat hier meestal om eetbaar en proper materiaal dat niet onderhevig zal zijn aan de Novel Food wetgeving. Ook logistiek biedt de veiling een grote troef gezien de tuinbouwstromen hier reeds gecentraliseerd worden (logistieke hotspot). Naast doordraaiigewassen zouden ook producten die net niet voldoen aan de eisen van de veiling (te rond, te groot, te klein, te krom, ...) bij de veiling kunnen worden en mee verwerkt worden in het valorisatietraject. Een aantal veilingen in Vlaanderen gaven al aan dat ze open staan voor het uitdenken en opzetten van organisatorische maatregelen (vb. vrijgave van het label ‘eigendom van de staat’, andere toeleveringswijzen zoals grote palloxen van 500 kg i.p.v. kleine veilingbakken van 10 kg). Een mogelijke bottleneck zijn de beperkte volumes die hier vrijkomen (400 - 2000 ton). Deze hoeveelheden kunnen echter sterk variëren afhankelijk van diverse factoren (seizoenale condities, politieke situaties, ...). Bovendien zouden deze kunnen uitgebreid worden met de overschotten die op het bedrijf zelf ontstaan als gevolg van uiterlijke afwijkeningen.

5.3. Productieverliezen in de verwerkende industrie

1. Kwantitatieve gegevens
De verwerkende industrie voor tuinbouwproducten is zeer sterk uitgebouwd in België. Zo is België wereldwijd de grootste producent van diepvriesgroenten (65% van de groenteproductie in openlucht is bestemd voor industriële verwerking) (Bernaerts et al., 2012). Verwerking van plantaardige grondstoffen gaat gepaard met grote hoeveelheden organisch-biologische afvalstoffen (OBA). OVAM heeft in samenwerking met FEVIA een studie uitgevoerd om deze stromen te kwantificeren. Algemeen kwam men op 2.403.500 ton OBA die jaarlijks vrijkomen tijdens en/of na het productieproces, waarbij het grootste deel vrijkomt tijdens het productieproces (2.275.000 ton). De samenstelling van deze stromen is echter zeer divers (vb. oliën en vetten, bijproducten van de suikerindustrie, bijproducten van de maalderijen). Binnen deze OBA maakt de categorie ‘aardappelen, groenten, fruit en bereide maaltijden’ ongeveer 31.3% (711.885 ton) en 9% (11.564 ton) uit voor respectievelijk afvalstromen gegenereerd tijdens en na productie (Braekevelt & Schelfhout, 2013). Specifieke kwantitatieve informatie rond reststromen van de individuele groenten binnen de verwerkende industrie zijn slechts beperkt beschikbaar en lopen dikwijls sterk uiteen gezien zowel de hoeveelheden als de samenstelling variëren per bedrijfsactiviteit en productiewijze (diepvriesproducten, conserven, sappen, wijn, sterkedrank en andere bereidingen).

Op basis van informatie van VeGeBe (Federatie van Belgische groenteverwerking en handel in industriegroenten) en interne kennis werd Tabel 4 opgesteld met hierin
gegevens rond de schil- en productieverliezen. De data rond de productie van industriegroenten zijn, in tegenstelling tot de data voor oogstresten, Belgische cijfers. De verwerkende industrie maakt zowel gebruik van tuinbougewassen afkomstig van Belgische arealen als van buitenlandse arealen. In de tabel worden de productietonnages weergegeven van de industriegroenten die in België werden geteeld (VBT, 2010) en waar mogelijk werden ze uitgebreid met de buitenlandse arealen (gerekend bij een gelijke productiviteit) (Elst & Geyskens, 2013).

Tabel 4: Productieverliezen in verwerkende industrie in België

<table>
<thead>
<tr>
<th>Primaire stroom</th>
<th>Jaar</th>
<th>Productie industriegroenten in België</th>
<th>Productie industriegroenten in België en buitenland voor verwerking in België</th>
<th>Resulterende reststromen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schilverlies en verlies bij snijderijen</td>
<td>-</td>
<td>ton/jaar</td>
<td>ton/jaar</td>
<td>%</td>
</tr>
<tr>
<td>Diepvriesindustrie</td>
<td>2011</td>
<td>955.000</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Verlies bij snijderijen</td>
<td>2012</td>
<td>-</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Productieverliezen en verliezen als gevolg van ondermaatte kwaliteit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bloemkool</td>
<td>2011</td>
<td>68.400</td>
<td>76.000</td>
<td>5</td>
</tr>
<tr>
<td>Bonen</td>
<td>2011</td>
<td>92.675</td>
<td>107.000</td>
<td>20</td>
</tr>
<tr>
<td>Cichorei</td>
<td>2010</td>
<td>75.000</td>
<td>75.000</td>
<td>11</td>
</tr>
<tr>
<td>Erwt</td>
<td>2011</td>
<td>61.100</td>
<td>130.000</td>
<td>18</td>
</tr>
<tr>
<td>Prei</td>
<td>2011</td>
<td>34.075</td>
<td>34.075</td>
<td>5</td>
</tr>
<tr>
<td>Spinazie</td>
<td>2011</td>
<td>92.400</td>
<td>96.000</td>
<td>5</td>
</tr>
<tr>
<td>Uli</td>
<td>2012</td>
<td>80.000</td>
<td>80.000</td>
<td>25</td>
</tr>
<tr>
<td>Wortel</td>
<td>2011</td>
<td>233.100</td>
<td>306.000</td>
<td>5</td>
</tr>
<tr>
<td>Fruit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appel</td>
<td>2010</td>
<td></td>
<td></td>
<td>10 - 30%</td>
</tr>
</tbody>
</table>

1 VBT, 2010, 2 Elst and Geyskens 2013, 3 VEGEBE

2. Huidig gebruik

De plantaardige OBA die vrijkomen tijdens het productieproces gaan momenteel voornamelijk naar de veevoeding (ca. 80%), worden vergist (ca. 15%) of worden afgezet via andere kanalen zoals uitrijden op akkers. Wanneer enkel gekeken wordt naar de organisch-biologische verliezen die ontstaan na het productieproces (129.000 ton die mede ontstaat als gevolg van kwaliteitsproblemen, verpakkingsfouten of andere redenen) zien we een aandeel van ongeveer 80% dat ingezet wordt voor humane en dierlijke consumptie. De rest wordt vergist of uitgereden. Voedingsbedrijven in Vlaanderen gaan dus reeds vrij bewust om met hun afval- en reststromen, in overeenstemming met de ladder van Moerman (Braekevelt & Schelfhout, 2013). Hoogwaardigere valorisatie van bijvoorbeeld stromen die vrijkomen tijdens het productieproces wordt in sommige gevallen praktisch belemmerd door een gezamenlijke opvang van de stromen (vb. netwerk van afvoerkanalen doorheen bedrijf met water om alle overtollige biomassa af te voeren). In de toekomst zou men dus bij het bouwen van voedselverwerkende bedrijven,
rekening kunnen houden met dergelijke aspecten om een gescheiden opvang van diverse reststromen mogelijk te maken.

3. Interesse stakeholders
Valorisatie van productieverliezen van de verwerkende sector biedt als voordeel dat het hier gaat om reeds verwerkte reststromen die vaak reeds gewassen zijn. Bovendien varieert de aard van deze reststromen minder in vergelijking met de oogstresten (voornamelijk eetbare biomassa in vergelijking met stengels, bladeren en ondermaatse vruchten bij de oogstresten). Binnen een aantal verwerkende bedrijven werd op weerstand gestuit omdat dergelijke valorisatie technische aanpassingen in het bedrijf vereist. Zo zou bijvoorbeeld de gezamenlijke opvang van de stromen anders georganiseerd moeten worden. Deze conclusies zijn niet te veralgemenen voor de volledige verwerkende industrie, maar vormen een indicatie wat er zoal speelt binnen de sector.

5.4. Tussentijdse samenvatting van de belangrijkste bevindingen
Uit de kwantitatieve en kwalitatieve evaluatie van de drie verschillende klassen van tuinbouwreststromen, blijkt dat de oogstresten jaarlijks vrijkomen in de grootste volumes (ca. 15.000 – 200.000 ton per jaar), hoewel deze hoeveelheden kunnen variëren afhankelijk van diverse factoren. Deze stromen zijn echter heterogeen en bestaan voornamelijk uit blad- en stengelmateriaal en ondermaatse biomassa. Bovendien komen ze ruimtelijk verspreid voor en is er risico op contaminatie met pesticiden, mycotoxines en aarde. De combinatie van deze aspecten kan de valorisatie in de voedings- of voederketen serieus belemmeren. De hoeveelheden gerapporteerde productieverliezen bij de verwerkende industrie zijn homogener en kleiner (ca. 3.000 – 20.000 ton per jaar). Deze worden op dit moment echter in veel gevallen reeds gevaloriseerd in de humane en dierlijke voeding. Tot slot zijn de reststromen die ontstaan op de veiling de kleinste categorie (400 – 2.000 ton). Ondanks de stimulerende huidige regelgeving, worden deze stromen nog voornamelijk uitgereden op het land. Desondanks biedt deze categorie van reststromen tal van opportuniteiten voor toepassingen in de humane voeding en de diervoeding, gezien ze vaak van goede kwaliteit zijn en bovendien geconcentreerd vrijkomen op de veiling. Bovendien kan dit volume aangevuld worden met reststromen die op het tuinbouwbedrijf ontstaan en om esthetische redenen momenteel niet aangevoerd worden.
6. HUIDIGE VALORISATIETRAJECTEN

Hoewel het huidig gebruik van tuinbouwreststromen hierboven reeds kort besproken werd per categorie, worden de huidige verwerkingstrajecten hieronder (Tabel 5) algemener besproken en wordt het economische plaatje toegelicht. Op die manier kan dit hoofdstuk als kader dienen om de toekomstige potentiële afzetmarkten (zoals besproken in hoofdstuk 7) in perspectief te zetten en de concurrentie tussen verschillende pistes aan te geven. Zoals blijkt uit de tabel varieert de kostprijs voor de verwerking van reststromen sterk. Zo gaat het composteren ruwweg gepaard met een kost van €70 per ton terwijl bij valorisatie richting diervoeding een opbrengst van €10 per ton gerapporteerd wordt. Daarnaast variëren de gerapporteerde prijzen ook binnen één categorie (vb. kostprijs van €10 en €70 per ton voor composteren).

Deze kostprijzen of opbrengsten worden bepaald door een aantal factoren. Zo bepalen de samenstelling en de eigenschappen van de tuinbouwreststromen de geschiktheid van de verwerkingstoepassingen. Dergelijke eigenschappen zijn bijvoorbeeld de calorische waarde (met oog op verbranding voor energieproductie), de energetische waarde (met oog op veevoeding), het biogaspotentieel (met oog op vergisting), de composteerbaarheid (met oog op de productie van compost), de aanwezigheid van niet-organisch afval zoals aarde en stenen (met oog op vergisting) en het droge stof gehalte (met oog op de stabiliteit) (OVAM, 2014a). Uiteraard spelen ook de puur technische verwerkingskosten een rol zoals de kosten van scheiding, ontwatering en droging bij een vergistingsproces. Naast de puur technische verwerkingskosten en opbrengsten zijn er verder nog een aantal aspecten die de finale kost of opbrengst kunnen beïnvloeden. Zo kunnen overheidsmaatregelen een sterke faciliterende of afremmende rol spelen door middel van financiële stimulering en aangepaste wet- en regelgeving. Momenteel subsidieert het EU beleid voornamelijk gebruik van biomassa voor energie (vb. groenestroomcertificaten). Naast deze stimulerende rol, kan de overheid anderzijds ook een afremmende invloed uitoefenen in het kader van een stijgende voedselveiligheid (onder meer door crisissen zoals EHEC, BSE en MKZ) en een stijgende milieuzorg (richtlijnen voor fosfaat, nitraat, zware metalen). Dergelijke wet- en regelgeving kan zich reflecteren in bijkomende administratieve lasten, vergunningen, verstregde controle voor het inzetten van reststromen en kan zo voormalige bronnen van inkomsten laten evolueren naar kostenposten en bijgevolg een wijziging in de toegepaste verwerkingsopties veroorzaken (Fevia, IWT, & Hogeschool West-Vlaanderen, 2003b). De regio waar de biomassavrijkomt speelt ook een rol. Zo is het in nutriëntarme regio’s (vb. Limburg, Brabant) gemakkelijker om afzetmogelijkheden te vinden voor bijvoorbeeld digestaat dat ontstaat na vergisting en liggen de afzetkosten lager. Daarnaast liggen de afzetkosten in Vlaanderen beduidend hoger dan in de buurlanden (Luxemburg, Frankrijk, Duitsland) waar voldoende landbouwareaal is om het digestaat ruw uit te rijden (OVAM, 2014a). Bovendien dient ook de kostprijs van het transport in rekening gebracht te worden (ca. €0.25 per ton per km) wat bij sommige opties reeds in het gerapporteerde cijfer zit en bij andere niet. Gerekend aan een gemiddelde gewasopbrengst van 25 ton per ha en een gemiddelde afstand van 25 km bedragen deze kosten ruim €150 per ha (de Wolf, 2005). Tot slot moet in sommige gevallen ook de kostprijs voor het extra oogsten
en afvoeren van de gewasresten die anders op het veld zouden blijven liggen in rekening gebracht worden. In het oogstrestenproject werd hier gewerkt met 3,5 uur extra benodigde tijd per ha, uitgevoerd door een loonwerker aan €90 per uur, wat tot een totale extra kost van €315 per ha leidt.

De prijzen of opbrengsten zijn dus erg case-specifiek wat een globale vergelijking tussen de verschillende afzetmarkten moeilijk maakt. Daarenboven zijn de gerapporteerde kosten en opbrengsten slechts een inschatting en kunnen deze licht verschillen van de actuele waarden, gezien (i) deze kosten in sommige gevallen afhankelijk zijn van de wetgeving die flexibel is en op lange termijn kan wijzigen, (ii) het niet steeds duidelijk is welke kosten ingerekend zijn in de gerapporteerde waarden en (iii) de data vaak van toepassing zijn voor de brede categorie van plantaardig organisch biologische biomassa in plaats van specifiek voor tuinbouwreststromen. Over het algemeen kan gesteld worden dat de afzet van reststromen momenteel steeds meer gereguleerd wordt. Dit gaat enerzijds in de meeste gevallen gepaard met een kostprijs en anderzijds met een strengere regelgeving waaraan de producten moeten voldoen.
Tabel 5: Kosten/opbrengsten, wettelijke aspecten, voorbeelden en opmerkingen met betrekking tot huidige valorisatietrajecten voor tuinbouwreststromen

<table>
<thead>
<tr>
<th>Verwerking</th>
<th>Kostprijs/opbrengst die de producent van de reststromen moet betalen/krijgt voor de verwerking</th>
<th>Wetgeving</th>
<th>Voorbeelden</th>
<th>Opmerkingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diervoeder</td>
<td>• Per product zullen de kosten of de opbrengsten verschillen afhankelijk van de voederwaarde en het droge stof gehalte. Meestal ontvangen de bedrijven een vergoeding voor hun reststromen, zoals in het geval van witloofworstels (€10 - €15 per ton). • In het geval van natte reststromen uit de groente- en fruitverwerkende industrie wordt echter in sommige gevallen een kostprijs van €3-50 per ton natte stof gerapporteerd.</td>
<td>• 767/2009/EG en een aantal specifieke verordeningen. • GMP (goede mengvoederpraktijken) is een kwaliteits- en controlesysteem dat boven op de diervoederwetgeving de kwaliteit en veiligheid van mengvoeders moet waarborgen. • Sorteerafval en overschotten van wortel, spruiten,... • Witloofworstels na de forcerie. • Overschotten van de diepvriesindustrie.</td>
<td>• Als gevolg van de kwalitatieve alternatieven en de moeilijke houdbaarheid kan de afzet van natte groente- en fruitreststromen in de toekomst een probleem vormen.</td>
<td></td>
</tr>
</tbody>
</table>
| Vergisting | • Opbrengst afhankelijk van de vergistingswaarde van de producten. Voor gewasresten wordt een opbrengst van €7.5/ton gewasresten gerapporteerd (een vergistingswaarde van ca. 50m³ biogas per ton, aan €0.15 per geproduceerde m³ biogas). Deze berekening komt ook overeen met andere gerapporteerde waarden. Hierin zit de kostprijs voor het verwerken van het resulterende digestaat niet verwerkt. • De kosten voor het vergisten zijn de afzetkosten van het digestaat en de verwerkingskosten (scheiding, ontwatering, drogen). Daarom vraagt de vergister dikwijls een gate-fee die door de toeleveranciers van de reststromen betaald wordt aan de verwerker. Deze verschilt per stroom en is voor gft €70-80 per ton, voor groenrest en gewasresten €20-25/ton en voor mest €15/ton. • Voorbereidende kosten (verzamelen, transporteren en ev. opslaan) zijn tevens voor de leverancier van de grondstoffen. • Een vergistingsinstallatie moet over een milieuvluchtlengte beschikken (verwerking van afval). • Vergisting wordt ondersteund door groenrestroomcertificaten. • Indien men het digestaat als meststof of bodemverbeterend middel gebruikt, moeten alle inputstromen aan de VLAREMA normen voldoen ook het eindproduct zelf. Afhankelijk van de inputmaterialen valt het digestaat binnen een andere categorie van de mestwetgeving. • Digestaat uit een vergisting zonder mest wordt beschouwd als “andere meststof” en niet als “dierlijke meststof”. Dit impliceert dat het bovenop de maximale norm voor dierlijke mest toegepast mag worden, maar wel binnen de stikstofnorm moet blijven. • Plantaardig organisch-biologisch afval in combinatie met andere stromen zoals energieteelt, dierlijke bijproducten en mest als gevolg van het te hoge vochtgehalte van deze eerste. • Installaties die zuiver op basis van natuurlijke biomassa werken, worden momenteel ontwikkeld zoals bij Greenwatt waar men met oogstresten vergist zonder bijmenging van structuur energieteel materiala. • Voor oogstresten die nog van het veld moeten gehaald worden (momenteel dus nog niet beschikbaar zijn) is vergisten vaak niet voordelig. • Zoals ook aangegeven in een aantal andere studies is het succes van het inzetten van de reststromen als cosubstraat in de vergisting een gevolg van de aantrekkelijke subsidiëring. Op korte termijn is dit dus een haalbare piste, maar alternatieve oplossingen zijn nodig voor het gebruik van reststromen ook op lange termijn te behouden. • Nood aan extra R&D om vergisting van natte reststromen te optimaliseren en om te kunnen omgaan met de variabiliteit en kwaliteit van de grondstoffen. |}
Compost

- Kostprijs voor het verwijderen van restmateriaal van de glastuinbouw voor verwerking tot compost, bedragen, afhankelijk van de sortering €35-70 per ton natte stof + transport. Andere gerapporteerde waarden vallen steeds binnen een range van €10-70 per ton natte stof.

- Een composteerinstallatie moet over een milieuvergunning beschikken (verwerken van afval). Wanneer landbouwbedrijven eigen restproducten zelf composten is geen milieuvorrichting vereist (boerdrijfcomposteren).

- Om tot een goed composteerproces te komen dienen de groene stromen van organisch bedrijf afval aan de normen VLAREMA voor organisch bedrijf afval voldoen. Industriële compostering van groen afval en GFT. Oogstresten kunnen enkel industrieel gecomposteerd worden bij GFT-composteers en indien deze een vergunning hebben voor het bijmengen van organisch bedrijf afval.

<table>
<thead>
<tr>
<th>Uitrijden in de landbouw</th>
<th>Geen data beschikbaar voor tuinbouwreststromen</th>
<th>Algemeen voor organisch biologische reststromen uit de voedingsindustrie: kostprijs €10-30 per ton natte stof. Er is een verbod op het rechtstreeks uitrijden (en onderploegen) in de landbouw van organisch-biologische bedrijfsafvalstoffen die niet voorkomen op de lijst van grondstoffen (bijlage 2.2 VLAREMA). In sommige gevallen doet de landbouwer het vrijwillig.</th>
<th>Allerhande restmateriaal uit de groente- en fruitteelt zoals oogstresten (vb. spruitkolen, ajuinen, witloof, spinazie, bloemkool, prei) en overproductie van de veiling. Dit wordt vaak aangeduid als bemesting of inwerken in de bodem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbranden gemengde stroom met energierecycling</td>
<td>Geen data beschikbaar voor tuinbouwreststromen</td>
<td>Allgemeen voor organisch biologische reststromen uit de voedingsindustrie: kostprijs €130-140 per ton natte stof. Volgens artikel 4.5.2 van het VLAREMA mogen stromen die selectief worden ingezameld en die in aanmerking komen voor materiaalrecyclage, in Vlaanderen niet verbrand worden.</td>
<td>Huishoudelijk restafval en niet-gevaarlijk bedrijfsafval. Voor de organische fractie hierin krijgen de bedrijven groene stroom certificaten, mits ze aan een aantal voorwaarden voldoen.</td>
</tr>
</tbody>
</table>

7. Potentiële afzetmarkten van eindproducten afgeleid van reststromen

Tuinbouwreststromen kunnen verwerkt worden tot diverse eindproducten binnen diverse sectoren. In de waardepiramide (§3, Figuur 5) wordt het optimale gebruik van reststromen voorgesteld waarbij deze verschillende bestemmingen opgedeeld en geprioriteerd worden. In dit hoofdstuk wordt een beeld gegeven van een aantal sectoren en mogelijkheden voor biogebaseerde producten afgeleid van tuinreststromen. Voor elke eindsector zullen immers andere eisen gelden voor de homogeniteit en kwaliteit van de reststromen en voor de minimale hoeveelheden. Dit is geen limitatief overzicht maar er wordt gefocust op deze sectoren die zich bovenaan de waardepiramide bevinden. Omdat in dit project in eerste instantie gestreefd wordt naar valorisatie in de voedingssector, wordt die het meest uitgebreid besproken. Dit overzicht werd opgesteld op basis van informatie die werd verkregen via de stakeholders en op basis van beschikbare online informatie.

7.1. Voeding

Tuinbouwreststromen bevatten een breed gamma aan moleculen en nutriënten met een complexe structuur die vaak een interessante rol kunnen spelen in de voeding. Momenteel zijn er reeds een aantal succesvolle voorbeelden van voedingstoepassingen zoals bijvoorbeeld Provalor die onder meer hoogwaardige groentesappen en natuurlijke kleurstoffen produceert o.a. op basis van reststromen van groentebewerkende en –verwerkende industrie. Een ander voorbeeld is Scelta. Dit is een verwerker, innovator en verkoper van champignonproducten. Hiervoor gebruiken ze niet alleen verse champignons, maar ook de voetjes van de champignons, die niet aantrekkelijk zijn voor de consument en die een reststroom zijn voor de tuinbouwer. De voetjes worden gekookt, geperst en vervolgens omgezet naar concentraten en poeders die onder meer Unilever gebruikt in zijn producten (Soethoudt & Timmermans, 2013). Ook Smood werkt aan het valoriseren van niet-nuttig ingezette groenten en fruit die ze verwerken tot natuurlijke snacks.

In plaats van de tuinbouwreststroom in zijn volledigheid te gebruiken, kunnen deze ook uiteengerafeld worden in een aantal basiscomponenten. Hieronder worden een aantal belangrijke basiscomponenten specifieker besproken die een rol kunnen spelen in de voedingsindustrie. De geldende wetgeving wordt in hoofdstuk 9 algemeen aangegeven voor voedingstoepassingen.
1. Voedingsvezels

Box 2. Algemene informatie rond voedingsvezels
Volgens de Europese wettelijke definitie zijn vezels: koolhydraatpolymeren bestaande uit drie of meer monomere eenheden, die in de menselijke dunne darm niet verteerd en niet opgenomen worden en tot de volgende categorieën behoren:

- Eetbare koolhydraatpolymeren die van nature voorkomen in levensmiddelen zoals die worden geconsumeerd;
- Eetbare koolhydraatpolymeren die langs fysische, enzymatische of chemische weg uit grondstoffen voor levensmiddelen zijn verkregen en een gunstig fysiologisch effect hebben dat door algemeen aanvaarde wetenschappelijke gegevens wordt gestaafd;
- Eetbare synthetische koolhydraatpolymeren met een gunstig fysiologisch effect dat door algemeen aanvaarde wetenschappelijke gegevens wordt gestaafd.

Voedingsvezels zijn onverteerbare koolhydraten en kunnen bestaan uit dezelfde bouwstenen als verteerbare koolhydraten (zoals suikers en zetmeel), maar de verbindingen tussen de monosachariden zijn anders waardoor ze niet enzymatische afgebroken kunnen worden in de dunne darm. Hierdoor komen ze onveranderd in de dikke darm terecht waar een deel van de vezels gefermenteerd wordt door bacteriën en dus wordt opgenomen in het lichaam (2-8 kcal per gram i.p.v. 4-16 kcal per gram bij de verteerbare koolhydraten). Het overige deel wordt niet gefermenteerd, maar verlaat het lichaam via de ontlasting (zonder energie vrijgave).

Naast de Europese definitie voor vezels (2008/100/EG) heeft men in 2009 via de Codex Alimentarius ook een definitie vastgelegd waarin onverteerbare koolhydraatpolymeren met 10 of meer monomere eenheden als vezels worden aangesproken. Uit expertconsultatie die gehouden is na het vaststellen van de Codex definitie, heeft men besloten dat er geen eenduidig wetenschappelijk bewijs is om onverteerbare koolhydraten met minder dan 10 sacchariden uit te sluiten.
De huidige vezelinname van de Belgische en Nederlandse bevolking is te laag. De aanbeveling van de Hoge Gezondheidsraad in België raadt volwassenen aan om minimum 30 g vezels per dag te consumeren. De gemiddelde vezelconsumptie van de gehele bevolking ligt echter onder deze aanbevolen hoeveelheid (15-20 g per dag). Om de vezelinname te verhogen kunnen onder andere producten met vezels verrijkt worden of kunnen meer vezelrijke producten op de markt gebracht worden (Leonards et al., 2013).

Plantaardig voedsel zoals granen, groenten, fruit en peulvruchten zijn de grootste bronnen van voedingsvezels. Daar waar graanproducten voornamelijk rijk zijn aan cellulose, xylanen, β-glucanen en lignine, bestaan groenten en fruit voornamelijk uit cellulose en pectines (Leonards, N. et al. 2013). Vezelaanrijking van voedsel (vlees, kaas, saus, ...) gebeurt de dag van vandaag reeds op basis van natuurlijke geïsoleerde vezels (vb. pectine uit appel en citrusvruchten, inuline uit cichorei en artisjok, oligofructose uit droge erwten en suikerbiet) of gesynthetiseerde vezels (Leonards et al., 2013; McKee & Latner, 2000).

Pectines zijn een belangrijke klasse van oplosbare vezels (ketens van voornamelijk galacturonzuur (min 65%) en rhamnose) die momenteel reeds geëxtraheerd worden uit tuinbouwreststromen (appelpomace, de reststroom van de appelsapproductie en citruspel). De extractie gebeurt via zuren gevolgd door een chemische neerslag met alcohol of aluminium zouten (May, 1990). De huidige prijs is €10-€15 per kilogram afhankelijk van de zuiverheid, het aangekochte volume en het land van herkomst (alibaba, 2014). De prijzen van pectine zijn echter onlangs met 10-20% gestegen als gevolg van stijgende verwerkingskosten en stijgende prijzen van de uitgangsproducten. Ondertussen blijft de pectinevraag stijgen alsook de totale markt van voedingsadditieven (smaak-, kleur-, en zoestoffen, enzymen, emulgatoren, vetvervangers en stabilisatoren) (Food Navigator, 2014). Deze aspecten in combinatie met toename van nutritionele beperkingen en verhoogde eisen naar additionele gezonde eigenschappen (vb. geassocieerde bioactieve componenten) zorgen ervoor dat andere vezelbronnen noodzakelijk worden (Larrauri, 1999) en dat er een duidelijk marktpotentieel is voor vezelrijke producten en toevoeging van vezels in de voeding (Elleuch et al., 2011; Lin et al., 2011). Er wordt dan ook volop onderzoek gedaan naar andere pectinebronnen op basis van reststromen van pompoen, cacaoschillen en kiwi (Food Navigator, 2014).

In België zijn twee grote spelers actief in de vezelindustrie: Cosucra en Beneo welke oplosbare vezels (inuline en oligofructose) alsook andere functionele vezels extraheren uit cichorei, droge erwten en suikerbiet. Verder verwerkt Eco Treasures perskoeken van de fruitindustrie (o.a. framboos, cranberry, bosbessen) onder meer tot vezels die gebruikt worden in voeding (vb. koekjes, ontbijtgranen), voeder (vb. anti-oxidatieve vezelbron) en cosmetica (vb. scrubs). In Nederland verwerkt Provalor groenten- en fruitresten op locatie bij de verwerkende bedrijven zelf. Door het persen van de vruchten bekomen ze een vloeibare fractie die gebruikt kan worden als sap en een vaste fractie rijk aan natuurlijke kleurstoffen, vitamines, secundaire metabolieten alsook vezels. Deze vezels worden ingezet in voeding waarin ze bijdragen aan de structuur, smaak en kleur van de voedingsproducten (vb. vlees en vegetarische producten).
2. Eiwitten

De belangrijkste bronnen van eiwit vandaag zijn van dierlijke oorsprong (vleeswaren en zuivel). De interesse verschuift echter van dierlijke eiwitten naar plantaardige eiwitten die gelijkwaardige of superieure functionele eigenschappen bezitten. Behalve het verschil in kostprijs (30-50% goedkoper) zijn de belangrijkste drijfveren hiervoor attitude (toenemende consumentenmening dat plantaardig voedsel minder risico’s met zich meebrengt dan dierlijk voedsel), duurzaamheid (lage conversiepercentages van eiwit-invoer naar vlees) en een gunstig nutritioneel profiel. Tevens wordt gezocht naar een vervanging voor conventionele eiwitbronnen met allergene eigenschappen zoals soja, gluten, zuivel, eieren en noten (Tergesen, 2010; Wageningen UR, 2012). Zo winnen bijvoorbeeld erwten en bonen aan belang gezien ze een goed gebalanceerd aminozuurprofiel bezitten in combinatie met granen (Adebiyi & Aluko, 2011; Boye, Zare, & Pletch, 2010). Naast eiwitten is er ook interesse in de afzonderlijke aminozuren die hun toepassing vinden in voeding, voeder, cosmetica, farmaceutica en als tussenproducten in de chemische industrie. De keuze van aminozuren is gebaseerd op hun voedingswaarde, smaak, fysiologische activiteit en chemische eigenschappen. In een visiedocument rond eiwitbeeldende reststromen werd een indicatie gegeven van de marktwaarde voor dergelijke eiwitten in de voedingsindustrie (€4-20 per kg) (Engelen & Westenbroek, 2013b).

Plantaardige eiwitbeeldende reststromen zijn bijvoorbeeld reststromen uit de aardappelverwerking, bietenloof, bietenperspulp, bierbostel, bladresten uit de tuinbouw, gras en tarwegist-concentraat. In de praktijk blijkt het complex te zijn om eiwitten te valoriseren uit agroreststromen. Redenen die hierbij worden aangehaald zijn de hoge vochtgehaltes (transportkosten en risico op rotten) en de lage eiwitgehaltes (1-5%). Daarnaast degraderen de eiwitten al op de akker naarmate het gewas groeit, een proces dat versneld wordt na de oogst. Hierdoor verliezen eiwitten alsnog hun functionaliteit en economische waarde. De eisen van de afnemende markt zijn echter hoog: men is voornamelijk geïnteresseerd in eiwitten met nieuwe functionaliteiten. Tot slot zijn de kosten voor regelgeving bij eiwitten bestemd met voedseltoepassingen zeer hoog (Engelen & Westenbroek, 2013b). In de visietekst rond de valorisatie van eiwitbeeldende reststromen van Engelen & Westenbroeck wordt aangeraden om in eerste instantie te starten met eiwitwinning voor de voedermarkt.

In België produceert Cosucra plantaardige eiwit-isolaten op basis van droge erwten (voornamelijk geteeld in Noord-Frankrijk) die ze toepassen in voeding voor ouderen en vegetariërs, glutenvrije voeding, gewichtscontrollerende voeding en voeding ter bevordering van de spierontwikkeling. Wei-isolaten zijn eiwitbronnen op basis van
restproducten van kaas, yoghurt en mattentaarten. Deze bijproducten werden vroeger vernietigd, op het veld uitgereden of ingezet in de diervoeding of biobrandstoffenindustrie. Momenteel worden ze echter ingezet in nutritionele sectoren zoals bijvoorbeeld bij de productie van sportdranken en -bars, babyvoeding alsook in de klinische voeding en in de bakkerijsector ter vervanging van ei-eiwit. Damhert is een Belgische voedingsproducent die de wei gebruikt voor de productie van tagatose, een zoetmaker. Raffinage van eiwithoudende reststromen (met onder meer voedingstoepassingen) wordt onder meer onderzocht in projecten van Cosun (natte reststromen van onder andere suikerbieten, aardappelen en tarwegist), Avebe (afvalwater uit de aardappelzetmeelindustrie) en ProLeaf (bietenloof en spinazie) (Engelen & Westenbroek, 2013a).

3. Secundaire metabolieten

Ondanks hun wijdverspreide aanwezigheid is er slechts doorheen de laatste decennia een stijgende interesse ontstaan voor hun rol in de voeding omdat van hun anti-oxidatieve werking (Dai & Mumper, 2010). Zo kunnen ze enerzijds ingezet worden als technische ingrediënten ter bevordering van de stabiliteit, bewaring, kleur en geur van diverse voedingsproducten. De markt gaat immers steeds meer op zoek naar dergelijke natuurlijke ingrediënten in de ‘clean label’ trend waarbij pure en simpele etikettering wordt nagestreefd. De synthetische alternatieven die vandaag op de markt zijn zoals butyl-hydroxytolueen (BHT) of butyl-hydroxyanisol (BHA) zijn daarenboven onderhevig aan een debat rond hun potentiële ongezond effect, wat de opmars van natuurlijke alternatieven nog meer ten goede komt (Productschap Tuinbouw, 2011; Addy, 2012). Anderzijds kunnen fenolische componenten ook ingezet worden als gezondheidsbevorderende ingrediënten. Epidemiologische studies hebben immers uitgewezen dat consumptie van planten rijk aan fenolische componenten bescherming biedt tegen de ontwikkeling van kankers, cardiovasculaire ziektes, diabetes, osteoporose en neurodegeneratieve ziektes (Pandey & Rizvi, 2009). Als gevolg van de toenemende bewustwording van de consument is de markt voor antioxidanten in volle expansie in diverse sectoren zoals voedsel en drank, voedingssupplementen, voeder, cosmetica, farmaceutica en materialen. De markt blijft stijgen en het enorme aanbod aan reviews bevestigt dat er momenteel nog sterk gezocht wordt naar andere bronnen van antioxidanten (onder meer reststromen) (Balasundram, Sundram, & Samman, 2006; Schieber, Stintzing, & Carle, 2001; Ayala-Zavala et al., 2011; Visioli et al., 2011; Galanakis, 2012).
Natuurlijke antioxidanten worden vandaag reeds geëxtraheerd uit reststromen van onder meer de appelsap-, olijfolie- en wijnverwerking. De prijs van een hydroxytyrosol-extract (fenolische component met sterke antioxidatieve werking) op basis van olijf varieert van €250 tot €4.000 euro per kg van het extract (afhankelijk van de zuiverheid) en van €14.000 tot €23.000 per kg voor de pure component (Nunes, 2005). Ajinomoto Omnichem is een Belgisch bedrijf dat onder meer gespecialiseerd in de extractie en opzuivering van polyfenolen op basis van planten. Zo maken ze bijvoorbeeld tannine-extracten op basis van eik en druivenpittenextracten (OmniVin) die gebruikt kunnen worden in wijn en voedingsmarkten.

Ondanks de potentiële markt, gaat de extractie van fenolische componenten uit reststromen echter gepaard met een aantal moeilijkheden zoals de variatie in samenstelling en kwaliteit van de reststromen, alsook de extraheerbaarheid en stabilititeit van de resulterende componenten (Productschap Tuinbouw, 2011).

7.2. VOEDER

Wanneer tuinbouwreststromen niet verwerkt kunnen worden tot menselijke voeding, wordt voeder dikwijls aanzien als het beste alternatief, gezien voeder indirect opnieuw in de menselijke voedingsketen terecht komt. Daarnaast is er globaal, als gevolg van de stijgende wereldbevolking, een stijgende vraag naar vee en dus ook naar veevoeding. Inzetten van reststromen voor deze toepassing wordt al lang toegepast in de veevoedersector (direct of indirect) en kan een alternatief bieden voor primaire (geïmporteerde) biomassa (OVAM, 2014a). Ook binnen Vlaanderen zijn er ontwikkelingen op dit vlak. Zo werd een actieplan rond alternatieve eiwitbronnen opgesteld door de Vlaamse Overheid in samenwerking met BEMEFA (de Belgische beroepsvereniging van mengvoederfabrikanten) met als doelstelling alternatieve eiwitbronnen beter te valoriseren en te promoten en dus de afhankelijkheid van import van eiwitbronnen van buiten de EU te reduceren (Vlaamse overheid & BEMEFA, 2012).

Naast ruwvoeders kunnen tuinbouwreststromen als grondstoffen ten behoeve van mengvoer worden ingezet. Zo worden aparte fracties uit de bulkreststroom gehaald die nadien behandeld kunnen worden om extra functionaliteiten toe te voegen (vb. met oog op biobeschikbaarheid, verteerbaarheid, gezondheid). Een industriële speler in de
productie van veevoeder ingrediënten gaf aan dat er zowel interesse is voor alternatieve bronnen van eiwitten als voor vezels en antioxidanten in veevoeder. De huidige bronnen zijn ook weergegeven in Tabel 6. Een aantal reststromen die momenteel al op grote schaal ingezet worden in de diervoeding zijn bietenperspulp, tarwegistconcentraat, aardappelstoomschillen en -vezels, bierbostel en maisgluten. Reststromen van tuinbouwproducten zijn hierin momenteel zeer beperkt.

<table>
<thead>
<tr>
<th>Type</th>
<th>Huidige bron</th>
<th>Prijs</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eiwitten</td>
<td>Soja, raapzaad, lupine, HiPro’s</td>
<td>€500-1500/ton</td>
<td>Voornamelijk essentiële aminozuren zoals lysine, tryptofaan, cysteine en threonine</td>
</tr>
<tr>
<td>Vezels</td>
<td>Bietenpulp, gist, graskuil, cellulose gebaseerde producten</td>
<td>€200-1500/ton (afhankelijk van soort)</td>
<td>Opgelet: bietenpulp kan ook antinutritioneel werken, Gist: ook bron van vitamines</td>
</tr>
<tr>
<td>Antioxidanten</td>
<td>Aangerijkte extracten uit citrus of druiven op basis van polyfenolen</td>
<td>€5-100/kg (afhankelijk van soort en concentratie)</td>
<td>Opgelet: kunnen ook antinutritioneel werken</td>
</tr>
</tbody>
</table>

Wat betreft de valorisatie van eiwitten uit tuinbouwreststromen kunnen opnieuw dezelfde knelpunten aangehaald worden die ook spelen bij eiwitvalorisatie richting voeding. De beperkte productievolumes in combinatie met de variërende, vaak lage concentraties van eiwitten en het vaak ongeconcentreerd vrijkomen van de stromen maakt valorisatie moeilijk. Dit eerste kan geïllustreerd worden in een rekenvoorbeeld uit een Nederlands visiedocument rond eiwithoudende reststromen. Hierin wordt berekend hoeveel eiwit uit een combinatie van reststromen (reeds toegepaste en nieuwe) zou kunnen gehaald worden. Dit bleek in het ideale geval 220.000 ton eiwit per jaar te zijn. Wanneer dit vergeleken wordt met de hoeveelheid soja die gebruikt wordt in mengvoeders in Nederland (730.000 ton eiwit per jaar) bedraagt de mogelijke substitutie slechts 30% (Engelen & Westenbroek, 2013a). Zuivere en volledige vervanging van de huidige eiwitbronnen (vnl. soja) door tuinbouwreststromen lijkt momenteel dus onwaarschijnlijk. Ze kunnen echter wel een toevoeging zijn van het huidige aanbod en zo op lokale schaal de duurzaamheid verhogen. Ondanks de hierboven vermelde moeilijkheden gebeurt er steeds meer onderzoek naar de extractie van eiwitten uit reststromen. Hierbij wordt echter veelal gefocust op agroreststromen (v.b. gras, maïsstro). Zo onderzoekt het Nederlandse Grass! Project de gecombineerde winning van een duurzaam eiwit met een vezelfractie uit gras via mobiele grasraffinage. Het project

7 Bietenloof, bietenperspulp, reststroom uit aardappelverwerkende industrie, bierbostel, tarwegistconcentraat, koemelk, bladresten e.d. uit de glastuinbouw
Energierijk bij Accres focust dan weer op de maisraffinage met onder meer productie van een eiwitrijke fractie die als veevoer gebruikt kan worden.

Een tweede component van interesse zijn de vezels. Gezien de vezelinhoud in tuinbouwreststromen hoger is dan de eiwitinhoud, zit hier theoretisch een groter potentieel. Bij het inzetten van vezels in diervoeding zijn voornamelijk een hoge energieinhoud, een goede verteerbaarheid en een constante kwaliteit van belang. Onderzoek naar de valorisatie van deze vezelinhoud gebeurt tot nu toe vaak in combinatie met de extractie van andere componenten zoals eiwitten of bioactieve stoffen. Op die manier wordt een bioraffinageconcept toegepast waarbij zoveel mogelijk componenten van de reststroom benut worden, wat zich vaak vertaalt in rendabelere business cases. Dit is ook het geval voor antioxidanten en andere bioactieve stoffen. Ondanks hun klein volumepercentage, vormen deze een laag volumineuze nichemarkt waarbij kleine hoeveelheden aan een relatief hoge prijs kunnen verkocht worden.

Samengevat kan gesteld worden dat de mogelijkheden in de voederindustrie enerzijds liggen in beperkt gestabiliseerde tuinbouwreststromen die als ruwvoeder verkocht worden en anderzijds aanvulling van het huidige aanbod aan voederingredienten aan de hand van bioraffinage van de reststromen. Dit laatste vereist echter doorgedreven onderzoek naar stabiliteit, werking en biobeschikbaarheid van de componenten.

7.3. Farmaceutica en cosmetica

Tuinbougewassen bevatten een reeks inhoudsstoffen die zeer interessant kunnen zijn voor de farmaceutische en cosmetische industrie. Zo kunnen essentiële oliën (vb. uit citruspel) gebruikt worden in parfum, zeep, cosmetica alsook in farmaceutische producten als maskerend agens. Daarnaast wordt veel onderzoek uitgevoerd naar de farmaceutische werking van secundaire metabolieten (vb. artimisine uit witloof met anti-malaria activiteit, kaempferol glucosides uit prei met een werking tegen arteriosclerose en trombose, flavonoiden en glucosinolaten uit kolen die tumorpreventief werken, falcarinol uit wortels met potentiële werking tegen leukemie, flavonoiden uit ui met beschermende werking tegen ontstekingen, hart- en vaatziekten en kanker) (Fytagoras, 2012). Mogelijkheden voor eiwitten in farmaceutica en cosmetica zijn enzymen en enzymremmers (€100-1000 per kg voor farmaceutische toepassingen en €10-100 per kg voor fijnchemicaliën) (Engelen & Westenbroek, 2013b).

Werken met reststromen voor deze toepassingen kan echter moeilijkheden met zich mee brengen, gegeven de niet constante aanvoer van biomassa en het brede scala aan variëteiten en dus inhoudsstoffen. De selectie van de commerciële variëteiten gebeurt namelijk vooral op kleur, vorm en ziekteresistentie en niet zozeer op aanwezigheid van farmaceutisch interessante componenten, wat bijgevolg kan leiden tot een grote variatie in hoeveelheden actieve componenten (Fytagoras, 2012). Daarnaast stellen farmaceutische bedrijven die planten gebruiken voor het winnen van medicinale stoffen, hoge eisen aan de kwaliteit en veiligheid van het aangeleverde plantenmateriaal. De aanwezigheid van residuen van bestrijdingsmiddelen en mycotoxines wordt bijvoorbeeld sterk gecontroleerd.
Voor cosmetica is de productie, het gebruik en de vermarkting van nieuwe stoffen gereguleerd in een Europese Richtlijn (76/768/EEC). Hierin wordt een lijst gedefinieerd van ingrediënten die verboden zijn alsook gereguleerd zijn. Daarnaast is ook een lijst van toegelaten kleurstoffen, conserveermiddelen en UV-filters toegevoegd. Voor farmaceutica geldt “The European Pharmacopoeia” als officiële referentie waarin kwaliteitsvoorwaarden van medicijnen doorheen hun hele levenscyclus worden weergegeven (zowel van de eindproducten als van de uitgangsmaterialen) alsook tests die dienen uitgevoerd te worden. De teelt van dergelijke gewassen gebeurt dan ook doorgaans onder certificeringssystemen zoals GAP (good agricultural practices), waarbij de teelt en verwerking nauwkeurig gedocumenteerd worden. Het EMA (European Medicines Agency) is verantwoordelijk voor de wetenschappelijke evaluatie van medicijnen voor gebruik in Europa en de toelatingsprocedures vergen veel tijd en geld. Het gebruik van reststromen voor de productie van farmaceutische producten is dus in de meeste gevallen beperkt omdat een zuivering of opconcentratie nodig is om de heterogene biomassa om te vormen tot een homogene grondstof met constante eigenschappen, wat additionele kosten met zich meebrengt (Braekevelt & Schelfhout, 2013).

Ondanks de moeilijke omstandigheden zijn er evenwel een aantal bedrijven gericht op het winnen van farmaceutische producten uit biomassa(rest)stromen. Zo profileert Holland Biodiversity zich als makelaar tussen de plantenkwekers en onder meer de farmaceutische industrie om nieuwe bioactieve stoffen op het spoor te komen, waarbij ze focussen op bloembollen (meer informatie op hollandbiodiversity.nl). Janssen farmaceutica ontdekte dat galantamine uit narcissenbollen gehaald kan worden om de symptomen van de ziekte van Alzheimer te bestrijden. Taxus wordt gebruikt voor de productie van Paclitaxel, een stof gebruikt in chemotherapie voor bepaalde vormen van kanker (Productschap Tuinbouw, 2011). In Finland wordt cholesterol (een cholesterolverlagende stof voor dieetmargarines) en een zoetstof (xylitol) uit houtpulp gewonnen (van ’t Hoog, 2014). Eco Treasures tenslotte is een Vlaams bedrijf dat momenteel reeds oliën en extracten uit pitjes, velletjes en persresidu van fruit haalt en onder meer verkoopt aan de cosmetische industrie.

De link tussen reststromen en farmaceutica blijft een hot topic en er lopen dan ook een aantal onderzoeksprojecten hieromtrent. Zo onderzoekt men bijvoorbeeld aan de Universiteit van Wageningen mogelijke toepassingen (onder meer in de farmaceutische sector) van quercitine uit de reststromen van uien (Meeusen, Schroot, Mulder, & Elbersen, 2008). In een meer algemene context tracht het Kenniscentrum Plantenstoffen in Nederland telers en potentiële afnemers van plantaardige reststromen bij elkaar te brengen om zo vraaggedreven op zoek te gaan naar haalbare valorisatietrajecten (meer info op plantenstoffen.nl).

7.4. **Natuurlijke biociden**

Biocidale producten worden gedefinieerd als actieve producten die één of meer actieve substanties bevatten ter vernietiging, onschadelijk maken, tegenwerken of controleren
van schadelijke organismen door middel van chemische of biologische middelen (98/8/EC).

Nieuwe wetgeving limiteert veelgebruikte synthetische biociden waardoor er een stijgende vraag is naar meer ecologische alternatieven (REACH systeem 1907/2006). Zo stijgt de interesse naar extracten en essentiële oliën van diverse planten zoals bijvoorbeeld munt, tijm, citrusvrucht, salie en lavendel. Deze kunnen worden ingezet omwille van hun bactericidale en fungicidale eigenschappen en kunnen hun toepassing vinden in diverse sectoren zoals de medicinale sector, de cosmetische sector, de voedings- en verpakkingssector en de plantbescherming (Kozlowski & Walentowska, 2008). Er wordt veel wetenschappelijk onderzoek uitgevoerd naar de bioactieve werking van natuurlijke plantencomponenten zoals bijvoorbeeld de herbicidale en antivirale werking van sesquiterpeenlactonen, een groep chemische verbindingen vaak aanwezig in de plantenfamilie van de Composieten (Sessa, Bennett, Lewis, Mansfield, & Beale, 2000; Macias, Galindo, Castellano, & Velasco, 2000).

Er gaan echter een aantal moeilijkheden gepaard met de introductie van nieuwe biociden in de markt, zo wordt samengevat op het jaarlijkse ABIM congres (Plant protection corner, 2013). De verplichtingen betreffende wetgeving (Europese Biocidal Products Directive (BPD)) en registratie binnen de EU belemmeren de ontwikkeling van de biopesticiden. Zo wordt gesteld dat slechts 0.1% van de potentieel bioactieve, microbiële biocontrolerende producten de markt bereikt. Ondanks het toenemende onderzoek zijn er vandaag de dag voornamelijk ‘oude’ actieve ingrediënten op de markt. Problemen die werden aangetoond op het ABIM congres zijn onder meer grote kosten voor registratie (1.2-1.5M€ in Europa) en specifieke producten waarbij veel kleine bedrijven midden in dezelfde nicemarkt. Men geeft aan dat 90% van de agrochemicaliën in handen zijn van zeven bedrijven. Daarnaast werkt ook de variatie in samenstelling en kwaliteit van de reststromen de verwerking tegen. Tot slot zijn de producten in sommige gevallen minder effectief dan de chemische alternatieven, is hun werking vaak afhankelijk van de omgevingscondities, en zijn specifieke vaardigheden vereist bij het toepassen van het product. Een goed begrip van de werking, een goede opleiding en begeleiding voor het toepassen en realistische verwachtingen zijn dus cruciaal (Productschap Tuinbouw, 2011).

Een concreet voorbeeld van een biocide op basis van reststromen werd uitgewerkt door TNO onder de vorm van een haalbaarheidsstudie. Hierbij werd de aanwezigheid van stoffen met een biocidewerking onderzocht in onder andere tomaten- en paprikaplanten. Een aantal daarvan, die ook qua marktprijs interessant zijn, kon in hoge concentraties uit het loof worden gewonnen zodat een rendabele business case mogelijk lijkt. Er is dan ook een vervoltraject in ontwikkeling in samenwerking met Koppert en Den Ouden Groenrecycling (Productschap Tuinbouw, 2011).

7.5. MATERIALEN EN CHEMICALIËN

Ook binnen de materialensector zijn er mogelijkheden voor plantaardige reststromen, die een duurzaam en strategisch interessant substituut kunnen vormen voor fossiele grondstoffen. Zo kunnen ze ingezet worden als functionele materialen zoals papier en
karton, voor biopolymeren en voor individuele chemische bouwstenen. Hieronder worden deze drie categorieën kort besproken.

Lignocelluloserijke stromen (zoals stengels, houtige gewasresten of bladeren) kunnen bijvoorbeeld als basis dienen voor de extractie van vezels. Hieronder opleven een aantal onderzoeksprojecten zoals de productie van een bakje op basis van vezelpulp uit tomatenbladeren, dat onderzocht werd door onderzoekers aan de universiteit van Wageningen. Daarnaast kunnen tomatenstengels dienen voor productie van karton zoals ontwikkeld door Smurfit Kappa. Een aantal problemen die hierbij kwamen kijken, zijn het seizoensgebonden karakter van de reststroom, de slechte bewaring en de plastic clips en touwen die verwijderd moeten worden (Productschap Tuinbouw, 2011).

Tuinbouwreststromen kunnen ook ingezet worden in de productie van biogebaseerde plastics (biopolymeren) (box 3). Momenteel is er slechts 1% substitutie van de bestaande polymeren door biogebaseerde varianten. Dit kan enerzijds te wijten zijn aan de hogere prijs van biogebaseerde plastics. (bio-PE is bijvoorbeeld 30-50% duurder dan conventionele PE). Deze dienen echter in perspectief gezien te worden, rekening houdend met de stijgende olieprijzen (bouwsteen van conventioneel plastic), de schaalvergroting en de totale systeemkosten (end-of-life). Anderzijds woedt ook een duurzaamheidsdiscussie rond voedings- versus plastictoepassingen en het debat rond genetische manipulatie van planten voor de productie van biogebaseerde plastics (Bolck, Ravenstijn, & Molenveld, 2012). Desondanks wordt onderzoek voortgezet, ook in Vlaanderen (onder meer door Flanders’ Plastic Vision en Pack4Food) en er is weldegelijk een sterke vraag zoals onder meer blijkt uit de activiteiten van Coca-Cola (plant bottle), Ford, Heinz, Nike en Procter & Gamble die meer plantaardig materiaal willen inzetten in hun producten (Shayon, 2012). Momenteel worden reeds een aantal reststromen (voornamelijk op basis van akkerbouwgewassen) ingezet voor de productie van biogebaseerde polymeren. Een aantal hiervan worden hieronder weergegeven (Bos & van Rees, 2004; Bolck et al., 2012):

- *Futerro en NatureWorks*: produceren beide polymelkzuur op basis van een restfractie van maïs
- *Novamont*: produceert Mater-Bi op basis van maïs-, graan- en aardappelzetmeel
- *Rodenburg biopolymers*: produceert Solanyl®, een biogebaseerd plastic op basis van aardappelzetmeel dat vrijkomt bij de verwerking van aardappelen en dat voornamelijk gebruikt wordt voor de “Grow and Go’ bloempotten
- *Avebe*: produceert Paragon, een grondstof voor biologisch afbreekbare verpakkingen en andere toepassingen op basis van aardappelzetmeel
- *Biotec*: produceert biogepaseerde pellets (Bioplast) op basis van bijproducten zoals aardappelzetmeel
- *Attero*: verwerkt momenteel organisch afval tot energie, maar is een tweefasen vergisting aan het ontwikkelen om polyhydroxyalkanoaten uit GFT te produceren (opstart verwacht in 2017)
Box 3. Informatie rond de definities en classes binnen de biogebaseerde plastics

De term ‘bioplastic’ is wijdverspreid, maar dient vermeden te worden gezien deze onderhevig is aan diverse opvattingen en invullingen. Hiermee kan enerzijds gedoeld worden op plastics op basis van bio-materialen of materialen van biologische oorsprong (korte levenscyclus). Anderzijds kan men ook doelen op biodegradeerbare of composteerbare kunststoffen of een combinatie van de twee (LNE, 2009). In deze sectie wordt de eerste categorie besproken en deze wordt vanaf nu benoemd met de term biogebaseerde plastics (VKC/FPV, 2013). Biogebaseerde polymeren zijn suikers, zetmeel, vezels, plantaardige olie of eiwitten die afkomstig kunnen zijn van een range aan bronnen zoals maïs, graan, suikerriet, hout alsook van reststromen (vb. aardappelschillen).

Binnen de biogebaseerde plastics wordt onderscheid gemaakt tussen enerzijds materialen die chemisch identiek zijn aan bestaande petrochemische polymeren en anderzijds materialen met nieuwe, unieke eigenschappen. Deze eerste zijn een vervanging van de conventionele kunststoffen (vb. PET, PE, ...) die (deels) geproduceerd zijn op basis van materialen met een kortere C-cyclus (vb. bio-PET op basis van biologische ethyleenglycol, bio-PE op basis van bio-ethanol). Voor deze materialen kan gebruik gemaakt worden van de aanwezige infrastructuur en de bestaande markten. De andere klasse bevat de biogebaseerde monomeren met nieuwe chemische structuren die nog niet eerder op de (petrochemisch gebaseerde) markt gekomen zijn zoals polymelkzuur (PLA) en polyhydroxyalkanoaten (PHA). Hoewel deze ‘nieuwe’ plastics vaak gekenmerkt worden door een goede functionaliteit, dient hiervoor telkens een nieuwe keten opgesteld te worden voor ontwikkeling, verwerking, implementatie en recyclage (wat dus stijgende kosten met zich meebrengt) (VKC/FPV, 2013; Bolck et al., 2012; de Jong et al., 2014). Naast de bouwstenen voor plastic is er ook een markt voor additieven die kunststoffen specifieke eigenschappen geven zoals bijvoorbeeld UV-stabilisatoren, kleurstoffen, brandvertragers, vloeiverbeteraars, ketenverlengers en kiemvormers. Er is momenteel vraag naar biogebaseerde (en indien mogelijk composteerbare) additieven. De meeste additieven voor biogebaseerde polymeren worden immers geproduceerd uit fossiele brandstoffen waardoor de meeste biogebaseerde plastics niet 100% gebaseerd zijn op hernieuwbare grondstoffen.

Uit gesprekken met de sector kon afgeleid worden dat er binnen de biogebaseerde plasticindustrie een aantal mogelijkheden zijn voor tuinbouwreststromen die geëvalueerd en onderzocht dienen te worden. Zo zouden de plantensappen en ‘onbruikbare’ vezels ingezet kunnen worden als voedingsbron voor bacteriën waaruit nadien polymeren kunnen worden geëxtraheerd zoals bij de productie van PHA. Daarnaast werden ook de additieven aangehaald als mogelijke afzetmarkt voor natte reststromen gezien het hier om kleinere volumes met een grotere prijklasse gaat. In het EcoBioCap project onderzoekt men de mogelijkheden om PHA, vezels en additieven te genereren op basis van bijproducten van de voedingsindustrie zoals olijvenafvalwater en kaaswei (Ecobiocap, 2014).
Tot slot kunnen ook *individuele chemische bouwstenen* geproduceerd worden uit tuinbouwreststromen. De complexe moleculaire structuur van dergelijke chemicaliën is vaak van nature aanwezig in plantaardig materiaal in tegenstelling tot fossiele bronnen. Dit kan een significante energiebesparing kan teweegbrengen. Echter, voor bulkhoeveelheden zijn deze stromen wellicht te klein (Wageningen UR, 2012).

7.6. Compostering en vergisting

Tot slot kan het composteren of vergisten van tuinbouwreststromen nog een meerwaarde bieden ten opzichte van verbranden van de biomassa (zoals weergegeven in de waardepiramide) (Figuur 5). Bodemverbeteraars afkomstig van het composteren van deze reststromen dragen bij tot het organisch stofgehalte in de bodem, wat belangrijk is voor een goede bodemstructuur en een goed waterhoudend vermogen. Zo dragen ze bij tot de bodemvruchtbaarheid en indirect tot de productiecapaciteit van de Vlaamse bodem zodat deze in staat blijft om voedsel en grondstoffen voor de bio-economie te voorzien (OVAM, 2014a). Bij *vergisting* worden de reststromen omgezet in duurzame energie en digestaat. Het energetisch gehalte van de tuinbouwreststromen is echter beperkt als gevolg van hun hoge vochtinhoud, dus de energie-opbrengst is relatief gering. In de ILVO mededeling 167 van case 3 kan meer uitleg gevonden worden rond compostering als valorisatievorm van reststromen en in §6 worden een aantal relevante aspecten van compostering en vergisting toegelicht.

7.7. Tussentiijdse samenvatting van de belangrijkste bevindingen

De voornaamste conclusie van de screening van de potentiële afzetmarkten van eindproducten is dat er een hele *reeks mogelijkheden* zijn voor tuinbouwreststromen waarvan er binnen verschillende sectoren reeds een aantal commercieel geëxploiteerd worden. Dit toont aan dat het wel degelijk mogelijk is om een succesvolle businesscase op te bouwen rond tuinbouwreststromen. Een aantal *knelpunten* komen echter, weliswaar in meerdere of mindere mate, telkens terug in de verschillende potentiële afzetmarkten. Zo bemoeilijken de *variabele kwaliteit en samenstelling* van de reststromen de productie van een eindproduct met constante kwaliteit en eigenschappen. Naast de variatie in grondstof, beïnvloeden stabilisatie- en verwerkingstechnieken daarenboven vaak de samenstelling van de reststromen, wat een *invloed kan hebben op de extraheerbaarheid, de stabilité en de functionaliteit*. Deze variabele samenstelling staat in schril contrast staan met de *hoge eisen van de verschillende sectoren naar homogeniteit en kwaliteit*. Bovendien zijn de meeste tuinbouwreststromen onderhevig aan *snel bederf* wat naast risico op pathogenen ook opnieuw de samenstelling van de stromen kan beïnvloeden. Deze knelpunten kunnen deels opgelost worden door een goede sortering en gescheiden en koel bewaren van de reststromen. Dit vraagt uiteraard een bijkomende stap in de verwerkingsketen die tijd en middelen vergt. Hieraan gerelateerd is er nood aan *bijkomend wetenschappelijk onderzoek* rond het optimaliseren van de extractie van componenten alsook kennisopbouw rond de chemische stabiliteit, de functionele eigenschappen en de bijhorende biobeschikbaarheid van de eindproducten. Daarnaast
zorgt het beperkte volume van de reststromen ervoor dat toepassing onder vorm van **bulkproducten niet ideaal** is (vb. bulkeiwit voor de veevoeding of bulkgroondstoffen voor de materialen industrie). Ze kunnen echter wel een aanvulling zijn van het huidige aanbod of hieraan toegevoegd worden onder vorm van specifieke additieven of producten met een functionele eigenschap (vb. kleurstoffen, secundaire metabolieten, ...).
8. ORGANISATIE VAN DE SUPPLY CHAIN

Om de valorisatie van reststromen in de praktijk te kunnen implementeren, is het cruciaal om samenwerkingen en supply chains op te zetten. Dit kan op verschillende manieren georganiseerd en geïmplementeerd worden. Een aantal belangrijke aspecten hierbij zijn:

(i) dat er vraag is naar de resulterende producten (van de afnemers) en dat deze daarenboven een technisch en/of economisch voordeel hebben ten opzichte van de conventionele producten en
(ii) dat de verwerkende sector toegang heeft tot voldoende reststromen. Dit kan uitgewerkt worden aan de hand verschillende scenario’s. Hieronder worden als voorbeeld vier mogelijke organisatievormen kort belicht waarbij de opportuniteiten en knelpunten telkens worden weergegeven. Er zijn uiteraard nog andere mogelijkheden om de supply chain te organiseren. Het is hierbij echter niet mogelijk om generiek en eenduidig te bepalen wat de meest optimale oplossing is. Dergelijke evaluatie is afhankelijk van geval tot geval en kan enkel gebeuren door verschillende concrete cases door te rekenen in samenwerking met marktspelers.

8.1. EVALUATIE VAN VIER VERSCHILLENDE ORGANISATIEVORMEN

1. Mobiele verwerking van reststromen door een zelfstandig verwerker

Telers die hun reststromen niet zelf willen of kunnen verwerken, geven hun stromen door aan een mobiele verwerker die bij meerdere bedrijven langsgaat en op die manier grotere volumes kan bereiken. Deze verkoopt zijn gestabiliseerde halffabricaten of verwerkte producten op zijn beurt door aan producenten van het eindproduct of brengt ze rechtstreeks op de markt.

De opportuniteiten bij mobiele verwerking van reststromen door een externe partner zijn:

- de beperkte volumes en seizoenaal beschikbaarheid opvangen door op verschillende bedrijven de stromen te gaan verwerken waardoor een groter volume aan inputstromen bereikt wordt
- gezien het hoge vochtgehalte van tuinbouwreststromen zorgt stabilisatie op de bedrijven naast flexibiliteit in opslag, ook voor besparingen op transportkosten en energie. Het verwijderde volume vocht dient namelijk niet meer getransporteerd te worden
- gebruik van decentrale units waardoor men kan werken met korte logistieke ketens wat een snelle verwerking garandeert, en op zijn beurt de productkwaliteit ten goede komt
- de verwerking wordt door een organisatie uitgevoerd die dit als kernactiviteit heeft, waardoor de kwaliteit gegarandeerd wordt en deze zich kan profileren als expert
- de investering in tijd, middelen en te ontwikkelen kennis voor de producent van reststromen is erg beperkt in dit scenario

Knelpunten die hierbij kunnen ervaren worden, zijn:
• de opbrengst van het resulterende product moet opwegen tegen de kost voor externe verwerking en de opbrengst/kost van de huidige valorisatie
• de diverse opgehaalde stromen mogen voor sommige toepassingen niet te sterk uiteenlopen qua samenstelling, vochtgehalte, kleur, smaak,…
• toegang tot voldoende complementaire reststromen om het hele jaar door een constant product te kunnen produceren

Verwerking van reststromen door een groente- en/of fruitveiling
De veiling vervult niet enkel zijn rol als vermarkter maar profileert zich ook als verwerker of stabilisator van reststromen. Zij leveren dan de gestabiliseerde halffabrikaten of verwerkte producten rechtstreeks aan de markt of aan verwerkers die instaan voor de verdere verwerking.

De opportuniteiten die geassocieerd zijn met dit scenario zijn:

• besparing op transportkosten en energie, wat erg belangrijk is gezien het hoge vochtgehalte van tuinbouwreststromen
• gebruik van een centrale verwerkings- of stabilisatie eenheid bij de bron waar reststromen ontstaan zodat een snelle verwerking mogelijk wordt en de productkwaliteit optimaal blijft
• grote volumes aan inputstromen als gevolg van een centrale ligging
• mogelijkheid tot uitbreiden van het aanbod aan reststromen door ook producten toe te laten (in een apart circuit) die niet voldoen aan de veilingeisen en die momenteel op het landbouwbedrijf achterblijven
• delen van de kosten voor onder meer apparatuur en vergunningen

Knelpunten die hierbij ervaren kunnen worden, zijn:

• aangezien het om een randactiviteit gaat, zal hier een extra takenpakket aan verbonden zijn zoals het uitvoeren van R&D, expertise opdoen en tijd, energie en personeel inzetten. Voorts zal men vaak niet over de juiste expertise beschikken om dergelijke activiteiten even kwaliteitsvol uit te voeren als iemand die dit als zijn hoofdactiviteit en expertise gaat uitbouwen
• nood aan een generieke technologie om diverse reststromen te kunnen stabiliseren. Wanneer slechts op reststromen van één gewas gefocust wordt, kunnen de volumes ontoereikend zijn
• nood aan voldoende aparte opslagruimte en/of verwerkingsruimte zodat voldaan kan worden aan de hygiëne voorwaarden

Verwerking van reststromen door een coöperatie van producenten van reststromen
Een coöperatie van telers bundelt krachten om de verwerking van reststromen als randactiviteit uit te voeren. Dit kunnen bijvoorbeeld een aantal tuinbouwers, diepvriesorganisaties of andere producenten van reststromen zijn die samen als randactiviteit de rol van verwerkers opnemen. Zij leveren dan de gestabiliseerde halffabrikaten of verwerkte producten door aan verwerkers die instaan voor de verdere
verwerking of leveren rechtstreeks aan de markt. Dit scenario leunt enigszins aan bij de verwerking door de veiling.

De opportuniteiten geassocieerd met dit scenario zijn:

- lokale verwerking wat een besparing op transportkosten en energie betekent
- gebruik van een centrale verwerkings- of stabilisatie eenheid bij de bron waar reststromen ontstaan zodat een snelle verwerking mogelijk gemaakt wordt en de productkwaliteit optimaal blijft
- grotere volumes aan inputstromen
- delen van de investeringskosten, operationele kosten en administratieve kosten

Knelpunten die hiermee geassocieerd kunnen zijn:

- aangezien het om een randactiviteit gaat, zal hier een extra takenpakket aan verbonden zijn zoals het uitvoeren van R&D, expertise opdoen en tijd, energie en personeel inzetten. Voorts zal men vaak niet over de juiste expertise beschikken om dergelijke activiteiten even kwaliteitsvol uit te voeren als iemand die dit als zijn hoofdactiviteit en expertise gaat uitbouwen
- nood aan een generieke technologie om diverse reststromen te kunnen stabiliseren. Wanneer slechts op reststromen van één gewas gefocust wordt, kunnen de volumes ontoereikend zijn
- collectief aankopen en gebruik van goederen kan leiden tot discussies over wie de onderhoudskosten in welke mate op zich neemt
- terughoudende houding bij Vlaamse landbouwers voor dergelijke constructies (zie case 3, ILVO mededeling 167)
- nood aan voldoende aparte opslagruimte en/of verwerkingsruimte zodat voldaan kan worden aan de hygiëne voorwaarden

Verwerking en vermarkting van reststromen door een producent van reststromen

Eén grote speler die duurzame, natuurlijke producten wil produceren op basis van zijn eigen reststromen en die alles in handen neemt zowel wat betreft verwerking als vermarkting.

De opportuniteiten die geassocieerd zijn met dit scenario zijn:

- de reststromen zijn al op het bedrijf aanwezig wat een logistiek voordeel biedt en transport overbodig maakt
- het bedrijf heeft zelf controle over de kwaliteit en de hoeveelheid reststromen

Knelpunten die hierbij ervaren kunnen worden zijn:

- aangezien het om een randactiviteit gaat, zal hier een extra takenpakket aan verbonden zijn zoals het uitvoeren van R&D, expertise opdoen en tijd, energie en personeel inzetten. Voorts zal men vaak niet over de juiste expertise beschikken om dergelijke activiteiten even kwaliteitsvol uit te voeren als iemand die dit als zijn hoofdactiviteit en expertise gaat uitbouwen
het bedrijf dient een voldoende grote hoeveelheid reststromen te genereren
nood aan voldoende aparte opslagruimte en/of verwerkingsruimte zodat voldaan kan worden aan de hygiëne voorwaarden

8.2. Tussentijdse samenvatting van de belangrijkste bevindingen

Aan de hand van deze voorbeelden wordt aangegeven dat diverse organisatievormen een sterke impact kunnen uitoefenen op diverse aspecten van het valorisatietraject. Zo beïnvloedt de geïmplementeerde organisatievorm in de eerste plaats de economische aspecten van het vooropgestelde valorisatietraject, doordat deze mee bepaalt wat de diversiteit is in soort en kwaliteit van de biomassareststroom, wat de beschikbaarheid is en hoe de keten in elkaar zit (opslag, transport). Dit financieel plaatje vormt momenteel nog steeds de meest doorslagggevende factor bij het overwegen en implementeren van nieuwe trajecten. De interesse en bereidheid van de betrokken partijen om reststromen af te voeren en verwerken hangt in zeer sterke mate af van de mogelijkheid om financieel voordeel te boeken in vergelijking met de huidige praktijken (Annevelink, van Gogh, van Dam, & Bartels, 2013). Zo wordt bijvoorbeeld gesteld dat het inzamelen van biomassareststromen binnen een straal van 20 km moet gebeuren, omdat de transportkosten anders niet worden terugverdiend. Naast economische en logistieke aspecten, beïnvloedt de gekozen organisatievorm ook de benodigde aanpassingen in de bestaande bedrijfsvoering en de supply chain, de beschikbare volumes en de samenstelling van de reststromen, de benodigde expertise en kennisontwikkeling en de risicospreiding. Door zijn impact op deze diverse aspecten, kan de gekozen organisatievorm ook bijdragen bij het in meer of mindere mate wegwerken van de geïdentificeerde knelpunten zoals seizoenaaliteit, beperkte houdbaarheid, beperkte volumes en ruimtelijke diffusie. Er is geen optimaal scenario dat in elk geval kan toegepast worden waardoor een case-specifieke benadering dus is aangewezen.
9. WET- EN REGELGEVING RELEVANT BIJ DE VALORISATIE VAN RESTSTROMEN

In deze paragraaf wordt een overzicht gegeven van de wetgeving die van toepassing kan zijn bij het herwaarderen van reststromen. Hierbij wordt eerst dieper ingegaan op de algemene wetgeving rond materialen, afval en bijproducten. Afhankelijk van de afzetmarkt van het eindproduct, dient vervolgens aan een specifieke wetgeving te worden voldaan. Gezien in dit project gefocust wordt op valorisatie in de voedingssector, wordt hieronder enkel de wetgeving voor voedingsproducten dieper belicht.

9.1. ALGEMENE WETGEVING ROND MATERIALEN, AFVAL EN BIJPRODUCTEN

Implicaties voor reststromen (oogstresten, reststromen uit de verwerkende industrie of doordraai op de veilingen) zijn onder te verdelen in twee gevallen afhankelijk van de beoogde finale bestemming van de reststroom. Wanneer de restproducten ingezet worden als *mest of bodemverbeterend middel, als bodem, als bouwstof of in kunstmatige afdichtingslagen* vallen ze onder een specifieke regeling rond de einde-afvulfase in de VLAREMA wetgeving. Dit houdt in dat een grondstoffenverklaring aangevraagd moet worden waarin informatie wordt geleverd rond (i) de toepassingen of het productieproces waarin het materiaal zal worden gebruikt, (ii) het materiaal in kwestie en (iii) het productieproces waarin het materiaal vrijkomt. De verklaring wordt afgeleverd door de Vlaamse overheid waarin wordt gesteld dat een bepaald materiaal niet of niet meer als een afvalstof moet worden beschouwd, eventueel gekoppeld aan een aantal randvoorwaarden. Wanneer de biomassa echter is opgenomen in bijlage 2.2 van VLAREMA, dient geen grondstoffenverklaring aangevraagd te worden. Deze bijlage bevat namelijk een lijst van materialen die in aanmerking komen voor gebruik als grondstof (per sector) zonder aanvraag van een grondstoffenverklaring en waarbij per opgenomen stroom criteria zijn opgesteld met onder meer informatie rond de voorwaarden waaraan hiervoor moet voldaan worden.
Op het moment dat aan de geldende voorwaarden, zoals gesteld in bijlage 2.2 is voldaan, wordt de reststroom niet meer gezien als afvalstof en dient diegene die instaat voor de verdere verwerking geen vergunning voor de verwerking van afvalstoffen te hebben. Zo wordt hierin gemeld dat “GFT- en groencompost” afkomstig uit “een vergunde inrichting voor de compostering of vergisting van groente-, fruit-, en tuinafval met maximaal 25% organisch -biologische bedrijfsafvalstoffen of van organisch afval dat vrijkomt in tuinen, plantsoenen, parken en langs wegbermen” gebruikt mag worden als grondstof voor “gebruik als meststof of bodemverbeterend middel” indien het materiaal voldoet aan een aantal specifieke voorwaarden zoals vermeld in artikel 2.3.1.1 en 2.3.1.3.

Wanneer een ander toepassingsgebied nagestreefd wordt zoals bijvoorbeeld voeding, voeder of cosmetica, geldt het algemene beoordelingskader over de eindeafvalfase in het materialendecreet en het VLAREMA (art. 36 en 37). Hierin staan de
algemene voorwaarden waaraan moet worden voldaan om producten niet meer als afvalstof te beschouwen (zie end-of-waste en bijproducten in box 4). Op basis hiervan wordt per specifiek geval een afweging gemaakt.

9.2. LEVENSMIDDELEN

In de Europese verordening 178/2002/EG werden de algemene voorschriften vastgelegd inzake de interne markt van levensmiddelen (en diervoeders). Hierin wordt het kader voor de controle en de opvolging van productie, preventie en risicobehandle opgesteld. Kernaspecten die hierbij aan bod komen, zijn onder meer risicoanalyse, transparantie, traceerbaarheid, autocontrolesysteem en aansprakelijkheid. Het FAVV (Federaal Agentschap voor de Veiligheid van de Voedselketen) is het uitvoerend orgaan in België waarin alle diensten voor inspectie en controle van de agrovoedingssector zijn samengebracht. Sinds 2005 is in België het koninklijk besluit betreffende autocontrole, meldingsplicht en traceerbaarheid in de voedingsketen van kracht waarbij de producent zelf de veiligheid moet garanderen van zijn producten. Deze verplichtingen zijn nauw verbonden aan andere dwingende en specifieke bepalingen zoals de toepassing van het HACCP-principe (Hazard Analysis and Critical Control Points) inzake levensmiddelenhygiëne. De Codex Alimentarius geeft een overzicht van de internationale voedselstandaarden, richtlijnen en handelingen, conform de HACCP-methode (Codex alimentarius, 2014).

Groente- en fruitbijproducten die men wenst in te zetten als ingrediënten zijn dus onderworpen aan een strenge wetgeving en moeten behandeld worden zoals voedingsproducten met oog op de voedselveiligheid (microbiologische voedselveiligheid, chemische voedselveiligheid, hygiëne). Voldoen aan deze strenge voorwaarden heeft belangrijke consequenties naar de haalbaarheid van de valorisatiepiste toe, gezien de meerwaarde van het eindproduct voldoende groot moet zijn om de verwerking te kunnen vergoeden (vb. gekoeld transport).
9.3. **Novel Foods**

De Europese Novel Foods verordening (258/97) heeft betrekking op voeding of voedingsingrediënten die niet significant gebruikt werden voor menselijke consumptie in de EU vóór 15 mei 1997 en die onder één van volgende categorieën vallen:

- nieuwe of doelbewust gemodificeerde primaire molecuulstructuur
- bestaand of geïsoleerd uit micro-organismen, schimmels of algen
- bestaand of geïsoleerd uit planten of dieren
- geproduceerd door middel van een weinig gebruikt productieproces voor zover het wijzigingen aanbrengt in de samenstelling of structuur die significant zijn voor hun voedingswaarde, metabolisme of gehalte aan ongewenste stoffen

Ze mogen alleen op de markt gebracht worden mits het doorlopen van een Europese goedkeuringsprocedure waarbij zowel wetenschappelijke gegevens als een risicoanalyse uitgevoerd dienen te worden. Indien het voedingsmiddel voldoende identiek is aan een voedingsmiddel dat al op de markt is, kan er een verkorte procedure gevolgd worden ("substantiële equivalentie"). De verordening geldt niet voor levensmiddelenadditieven, aroma’s en extractiemiddelen, hierop is andere wetgeving van toepassing (Federale overheidsdienst volksgezondheid, veiligheid van de voedselketen en leefmilieu, 2013). De lange (18-24 maanden) en kostelijk procedure is voor veel spelers een knelpunt (Waarts et al., 2011).

Becel pro.activ werd bijvoorbeeld in 2000 goedgekeurd als Novel Food. Hiertoe heeft Unilever in samenwerking met vele onafhankelijke wetenschappers, uitgebreid onderzoek gedaan naar de cholesterolverlagende eigenschappen van plantensterolen aan de hand van 40 klinische onderzoeken. Ook het Belgisch bedrijf Fugeia slaagde er in 2011 in een novel food status te verkrijgen voor een product op basis van tarwezemelen (Brana Vita) dat gebruikt kan worden in een reeks aan functionele voedingsproducten zoals ontbijtgranen, zuivelproducten en drank (Food Navigator, 2011).

9.4. **Voedings- en gezondheidsclaims**

Om het toenemend aantal gezondheids- en voedingsclaims (op levensmiddelen en voedingssupplementen) terug te dringen, werd een geharmoniseerde wetgewing op Europees niveau opgesteld om de consument te beschermen (1924/2006/EG). Hierdoor dienen de circulerende gezondheidsclaims herbekeken en geëvalueerd worden door de Europese Voedselveiligheidsorganisatie (EFSA, European Food Safety Authority). Voor een positieve evaluatie moeten de nutriënten of andere stoffen waarop de claims betrekking hebben, een bewezen heilzaam nutritioneel of fysiologisch effect hebben, gestaafd met wetenschappelijke gegevens. De hoeveelheden waarin deze aanwezig zijn in het eindproduct dienen significant te zijn en bovendien bio-beschikbaar. De implementatie van deze regels is echter nog steeds onvolledig waardoor de hervorming ook de volgende jaren nog zal doorgevoerd worden. Dit wordt ook bevestigd door een speler, actief binnen de voedingssupplementen, geneesmiddelen en cosmetica gebaseerd op plantenextracten, die aangaf dat ruim 90% van de huidige claims herbekeken en geëvalueerd werden en zullen worden.
Voedingsclaims zijn beweringen die suggereren of impliceren dat een voedingsmiddel bepaalde nutritionele eigenschappen heeft door (i) energie (calorische waarde) die het levert, in verlaagd of verhoogd tempo levert of niet levert en/of (ii) nutriënten of andere stoffen die het bevat, in verlaagde of verhoogde hoeveelheden bevat of niet bevat (Rompelberg, e Jong, & Jansen, 2004). Voor voedingsclaims bestaat er een Europese lijst (bijlage van EG 1924/2006) met toegelaten claims en de bijhorende voorwaarden. Zo kan bijvoorbeeld de claim “bron van vezels” gebruikt worden bij levensmiddelen waarbij het vezelgehalte minimaal 3g/100g is. Enkel voedingsclaims die hierin zijn opgenomen, zijn toegelaten.

Gezondheidsclaims zijn beweringen die beweren, suggereren of impliceren dat er een verband bestaat tussen een voedingsmiddelencategorie, een voedingsmiddel of een bestanddeel daarvan en gezondheid. Deze kunnen ingedeeld worden in drie categorieën: (i) functie-claims of Artikel 13.1 gezondheidsclaims, (ii) risico verlagende claims (artikel 14) en (iii) gezondheidsclaims die gerelateerd zijn aan de ontwikkeling en gezondheid van kinderen. De zogenaamde “General function” claims werden samengebracht uit alle EU landen (ruim 44.000 claims) en gereduceerd tot 4.600 claims welke momenteel geëvalueerd worden door EFSA. De evaluatie van deze claims moet resulteren in een lijst van toegelaten claims waarin de rol van bepaalde nutriënten of substanties beschreven staan die een bewezen rol hebben in de groei, ontwikkeling en lichaamfuncties. Voor de twee andere categorieën is geen algemene lijst beschikbaar en geldt voor elke claim een individuele toelatingsprocedure. Hiertoe dient een aanvraag (inclusief verslag van de verrichte onderzoeken, eigenschappen zoals bioactiviteit en wetenschappelijke studies) ingediend en goedgekeurd te worden door zowel de nationale bevoegde instantie als Europese Voedselveiligheidsorganisatie (EFSA, European Food Safety Authority) en de Europese Commissie (Europese Unie, 2014). Enkel goedgekeurde en gepubliceerde claims mogen worden gebruikt. Voor functie-claims geldt een gelijkwaardige procedure voor aanvraag van nieuwe claims die niet in de algemene lijst staan.

In de huidige toegelaten lijst van “general function claims” staan onder meer bepaalde vitaminen en mineralen, specifieke voedingsvezels, vetzuren, walnoten, polyfenolen in olijfolie, suikervervangers, lactase en yoghurt die levende yoghurtbacteriën bevat. Wat betreft risicoverlagende claims zijn er een aantal goedgekeurd voor gerst- en haverbetaglucanen. Hierbij wordt door middel van analyses van klinische trials het behoud en de reductie van bloed cholesterol via de consumptie van 3 g beta-glucanen van gerst of haver aangetoond. Ook voor een water oplosbaar tomatenconcentraat, commercieel verkocht onder de naam Fruitflow®, bestaat een goedgekeurde EFSA gezondheidsclaim. Vrijwilligersstudies hebben de invloed en de biobeschikbaarheid aangetoond van bloedplaatjes-aggregatie inhibitoren welke een bewezen positief effect hebben op de bloedsomloop en het risico op cardiovasculaire ziektes verminderen. Andere toegelaten EFSA claims binnen deze categorie zijn voor xylitol en suikervrije kauwgom en een aantal claims specifiek gerelateerd aan de ontwikkeling en gezondheid van kinderen (Sadler, 2014).
10. KNELPUNten EN OPPORTUNITeITEN DIE SAMENHANGEN MET DE VALORISATIE VAN TUINBOUWRESTSTROMEN

Hieronder worden een aantal opportunitieiten aangehaald en een aantal knelpunten of werkpunten die samenhangen met de valorisatie en het hergebruik van tuinbouwreststromen (Tabel 7). Gezien sommige knelpunten zeer specifiek zijn en afhankelijk van eindproduct en eindtoepassing wordt hier een niet limitatief overzicht gegeven op basis van stakeholder interviews en literatuuronderzoek. De meeste werden doorheen het rapport reeds vermeld en worden hier samengevat en aangevuld. Ze zijn ingedeeld volgens de dimensies van Geels (Geels & Raven, 2006) (zie Hoofdstuk 3).
Tabel 7: Knelpunten en opportuniteiten die samenhangen met de valorisatie en het hergebruik van tuinbouwreststromen

<table>
<thead>
<tr>
<th>Wetenschap</th>
<th>Industrie</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Reeds veel onderzoek uitgevoerd naar waardevolle inhoudsstoffen van tuinbouw(rest)stromen dus veel theoretische kennis aanwezig.</td>
<td>+ Bedrijven staan meer en meer open voor een duurzaam beleid dat ze ook als marketingstrategie gebruiken. Er wordt veel aandacht besteed aan recyclage en gebruik van reststromen waarbij gewerkt wordt aan het creëren van gesloten kringlopen, verzekeren van continuïteit en homogeniteit en het opzetten van een keten.</td>
</tr>
<tr>
<td>+ Wetenschappelijke interesse in tuinbougewassen en bijhorende reststromen.</td>
<td></td>
</tr>
<tr>
<td>- Nood aan meer onderzoek naar flexibele, geïntegreerde processen. Zo is er bijvoorbeeld nood aan flexibele technologieën die het geschikt maken om meerdere gewassen en reststromen te verwerken, zodat omgegaan kan worden met de seizoenaal beschikbaarheid (Engelen & Westenbroek, 2013b).</td>
<td>- Onvoorspelbare volumes en seizoenaal schommelingen bemoeiijken continue, betrouwbare aanvoer van inputstromen (Comeos, 2012). Ook de variatie in kwaliteit van de input bemoeiikt de verwerking en gegarandeerde afzet.</td>
</tr>
<tr>
<td>- De tuinbouwreststromen zijn vochtig van aard en bezitten een variabele samenstelling. Daarom is er nood aan meer onderzoek rond stabilisatiemethoden of andere manieren om ervoor te zorgen om aanvaardere aanbod en volume. Hieraan gerelateerd is kennis nodig rond de impact van verwerking op de samenstelling en functionaliteit van diverse inhoudsstoffen en rond groene extractiemethodes. Voorts is er nood aan kennisopbouw rond de functionele eigenschappen en de biobeschikbaarheid van de eindproducten.</td>
<td>- Geografische spreiding van kleine landbouwbedrijven (beperkte hoeveelheid reststromen) impliceert verhoogde transportkosten voor centrale verwerking. Door hun hoge vochtgehalte bederven de reststromen van groenten en fruit snel, zijn ze moeilijk op te slaan en zijn de transportkosten aanzienlijk. Hoogwaardige verwerking van reststromen wordt belemmerd door een variabiliteit in de samenstelling van deze stromen (OVAM, 2014a). De samenstelling is immers afhankelijk van de soort en variëteit, de rijpheid, de teeltomstandigheden, de ondergane behandeling en het verwerkingsproces.</td>
</tr>
<tr>
<td>- Elke extra bewerking stapt vereist een zorgvuldige afweging op basis van de waardecreatief de deze bewerkingstap zal opleveren. Complexe verwerking, opzuivering of isolatie impliceert vaak hoge kosten en energie input en moet afgewogen worden ten opzichte van de finale meerwaarde van het eindproduct. Dit is ook gelinkt met de wetgeving: een ruw extract kan dikwijls gemakkelijk zijn afzet vinden in de voeding in vergelijking met een gecentreerde verbinding die een E-nummer moet aanvragen (Engelen & Westenbroek, 2013b). Daarnaast zorgt een minimale processing ook voor minder andere fracties die moeten verwerkt worden. Dit is uiteraard niet steeds het geval waar de kwaliteit en samenstelling van zuivere componenten in sommige gevallen beter onder controle kan gehouden worden en hierdoor een meer betrouwbaar product oplevert. Ook kan opzuivering in veel gevallen een kwalitatieve meerwaarde betekenen.</td>
<td>- Hoogwaardige verwerking van reststromen wordt belemmerd door een variabiliteit in de samenstelling van deze stromen (OVAM, 2014a). De samenstelling is immers afhankelijk van de soort en variëteit, de rijpheid, de teeltomstandigheden, de ondergane behandeling en het verwerkingsproces. De huidige keten is niet afgestemd om de ontstane reststromen een nieuwe toepassing te geven. Zo worden diverse categorieën van reststromen vaak allen samen verzameld of is er geen ruimte voorzien voor gekoelde opslag van de biomassa. - Opzetten van valorisatie van reststromen bij de bedrijven is dikwijls moeilijk omdat dit niet behoort tot de kernactiviteiten van het bedrijf. Daarenboven vraagt de ontwikkeling van een valorisatietraject en implementatie in de markt, tijd en expertise. Theoretisch zijn de bedrijven overtuigd van het opwaarderen van reststromen, maar men wil hierbij (i) dat dit geen extra geld kost, (ii) dat het opwaarderingsproces aansluit op bestaande productieprocessen en (iii) dat het overal kan plaatsvinden (mobiel).</td>
</tr>
</tbody>
</table>
De informatie doorstroom en de samenwerking tussen partners is vaak te beperkt. Het raffinageconcept vereist een optimale ketensamenwerking. Om zoveel mogelijk fracties van het gewas te kunnen valoriseren worden, dienen verschillende partners samen te werken in een rendabele businesscase over diverse sectoren heen: tuinbouwers, papierindustrie, voedselproducenten, voederproducenten en verwerkende schakels tussenin (Ministerie van VROM, 2010).

Het verwerken en transporteren van afwijkende vormen of restjes is vaak niet efficiënt. De verwerkingsprocessen en de logistieke keten zijn immers dikwijls opgesteld op basis van ‘perfecte’ producten. Producten met afwijkende vorm en maat zorgen hierdoor voor minder efficiënte processen (bijvoorbeeld kromme komkommers passen minder goed in een doos waardoor dit het logistiek proces negatief kan beïnvloeden). Bovendien gebruiken verwerkers in sommige gevallen liever met hoog kwalitatieve producten omdat hierbij minder snel bederf optreedt (Waarts et al., 2011).

Hoogwaardige valorisatie vereist nood aan borging van de productkwaliteit en veiligheid door de gehele keten (“tracking & traceable”).

Octrooien kunnen de bio(gebaseerde) economie belemmeren en beperken. Bedrijven willen alleen in innovaties investeren, als deze door octrooien kunnen worden beschermd, welke niet steeds eenvoudig aan te vragen zijn (Bex & Blank, 2013).

Technologie

- Pilootapparatuur om producten te testen (VMT, 2014b). Er ontstaan steeds meer pilootfabrieken om bedrijven de kans te geven om nieuwe concepten te testen in de praktijk of nieuwe producten te bereiden alvorens op industriële schaal te produceren of de investering te maken (Biobase Europe Pilot Plant, ILVO Food Pilot, Helmond).

- Aanpassing van de oogstmachines nodig om de oogstresten van het veld te halen.
- Bestaande technologieën moeten beter op elkaar afgestemd worden om multi-valorisatie waar te maken, nieuwe technologieën moeten ontwikkeld worden die economisch haalbare resultaten opleveren. Enerzijds is een business case op basis van slechts één eindproduct vaak economisch niet haalbaar (vb. enkel de eiwitfractie valoriseren uit bietenpulp). Anderzijds is het risicovol om meteen een businesscase op te stellen op basis van verschillende eindproducten omdat vooraf voor al deze producten reeds afnemers (en een acceptabele prijs) gevonden moeten worden. Aansluiten bij bestaande initiatieven en productietekens kan hier een oplossing bieden.

Beleid

- Stimulerende wetgeving op vlak van hergebruik van ‘afval’. Het Europees parlement wil dat de Europese Unie efficiënter met grondstoffen omgaat. Zo worden voorstellen geformuleerd om afvaldumping tegen te gaan en wil de Europese volksvertegenwoordiging dat Brussel zijn doelstelling voor 2020 voor hergebruik van afval aanpast zodat er tegen die tijd geen afvaldumping of -verbranding meer plaatsvindt als hergebruik een optie is. Verder dringt het Europees parlement aan op een milieUBLasting om verkwisting van grondstoffen tegen te gaan (VMT, 2014a).
- Terugdringen van voedselverliezen en –verspilling is een agendapunt binnen het duurzaam beleid in België, onder meer door de oprichting van een interdepartementale werkgroep rond voedselverlies- en verspilling en rond bio-economie en introductie van het duurzaam afval- en materialenbeheer. Duurzame productie en verwerking van tuinbouwreststromen zorgt immers niet alleen voor het beter sluiten van materiaalkringlopen, tegengegaan van milieu-externaliteiten en vermijden van afval, maar zorgt ook voor de productie van nieuwe, kwalitatieve producten vanuit biomassa die momenteel als afval beschouwd worden, wat tot een ecologisch en economisch voordeel leidt.
- In Nederland werkt men reeds met de ‘Green Deals’ strategie. Dit houdt in dat de overheid ‘Green Deals’ aangaat met actoren die tegen (niet-financiële) knelpunten aanlopen bij het realiseren van een duurzaam initiatief zoals bijvoorbeeld knelpunten in de wet- en regelgeving ophelde, verzorgen van goede informatie of voorzien in goede samenwerkingsverbanden. Dit engagement verbindt hen ertoe zich te engageren om de knelpunten weg te werken. De ‘green deals’ kunnen zich afspeilen op verschillende vlakken zoals energie, klimaat, water, grondstoffen, mobiliteit, biodiversiteit, biobased economy, bouw en voedsel.
- Er bestaat een meldpunt voor belemmeringen voor de bio-economie in Vlaanderen. De Vlaamse Overheid is ervan overtuigd dat naast technische uitdagingen en innovaties, ook regionale, nationale en internationale regelgeving zorgen voor belemmeringen voor de ontwikkeling van
De biogebaseerde economie. Aan de hand van het meldpunt wenst men belemmeringen weg te nemen en nieuwe knelpunten snel op te pakken. Dit wordt geleid door het departement economie, wetenschap en innovatie (EWI) in samenwerking met andere betrokken departementen en organisaties.

- **Organische reststromen (biomassa) worden nog te vaak beschouwd als afval.**
 Ondanks aanpassingen in de wet worden veel organische reststromen nog steeds als afval beschouwd. Dit is afhankelijk van het type reststroom en het toepassingsgebied. In de praktijk komt het er op neer dat veel ondernemers met deze belemmering worden geconfronteerd en vergunningen moeten aanvragen, waarbij een complexe boekhouding moet worden bijgehouden. Door vervangings van het afvalstoffendecreet met het materialendecreet en het VLAREMA waarbij duurzaam beheer van materialen centraal staat en waar aandacht is voor “einde van afval” wordt deze belemmering reeds deels aangepakt (Bex & Blank, 2013).

- **De geproduceerde eindproducten en processen moeten voldoen aan de regelgeving rond kwaliteitssystemen (HACCP, GMP, tracking, tracing) alsook aan de strikte normen voor de veiligheid en kwaliteit van de eindproducten (vb. voedselveiligheid). Hiervoor is een sterke administratie en een goede kennis van de procedure nodig.**

- **‘Scheeftrekking’ van de valorisatiepistes als gevolg van subsidieregelingen.**

- **Het aanmaken en aanvragen van een Novel Food dossier vergt veel inspanning en geld en de toelatingsprocedure kan lang duren.**
 Dit geldt ook vaak voor andere registratieprocedures. Grote bedrijven zijn vaak terughoudend omdat ze onzeker zijn over het terugverdienen van de gemaakte kosten aan de hand van een product dat op de Europese markt nog ‘onbekend’ is. Kleine bedrijven kunnen de procedure vaak gewoon niet betalen (Hoogland, 2009).

- **Er is een strikte wetgeving verbonden aan de overschotten van de veiling.**

| Gebruiken van de klanten | - Weerstand van de klant om sommige toepassingen van de reststromen te aanvaarden.
 Zo leeft de perceptie dat reststromen afval zijn en dus niet in de voeding geconsumeerd mogen worden. Bij incorporatie van reststromen in de voeding wordt dit dan ook dikwijls niet vermeld op het etiket. Ondanks de algemeen aanvaarde mindset waarbij reststromen opgewaardeerd moeten worden en voedselverliezen tegengegaan moeten worden, kan het gebruik van reststromen in de voeding dus vaak niet letterlijk als marketingstrategie gebruikt worden. |
| --- | --- |

| Cultuur | - **Voedsel verspillen wordt steeds meer sociaal onaanvaardbaar, duurzame praktijken zijn een must.**
 - **Veel valorisatietrajekten vergen tijd, expertise en middelen voor het opstellen, implementeren en haalbaar te maken, terwijl het alternatief “niets doen” momenteel vaak de (economisch) makkelijkste en interessantste optie is.** |
11. Conclusies

Tuinbouw is een belangrijke troef van Vlaanderen. Hoewel ze slechts 8% van de totale oppervlakte cultuurg rond inneemt, is ze verantwoordelijk voor 28% van de totale landbouwproductiewaarde (Bernaerts et al., 2012). De productie en verwerking van deze tuinbouwwassen gaat gepaard met een van de grootste verliezen in vergelijking met andere productcategorieën zoals granen, vis, vlees en zuivel. Veel van deze restfracties beschikken over het potentieel om te leiden tot toepassingen met een hoge toegevoegde waarde in diverse sectoren zoals onder meer voeding, voederingrediënten, materialen, chemicaliën en cosmetica. Op die manier kunnen reststromen uit de groenten- en fruitverwerkende sector een belangrijke rol spelen in de bio-economie. Echter aspecten als beperkt productievolume, hoog vochtgehalte, variabele samenstelling en seizoensgebonden beschikbaarheid bemoedigen de valorisatie waardoor ze vandaag slechts weinig valorisaties kennen of weinig geraffineerde en kleinschalige toepassingen die zich vrij laag in de waardepiramide bevinden (vb. verbranding, onderploegen op het veld, composteren, vergisten of diervoeding). Het uitgangspunt binnen dit onderzoek is dat biomassareststromen in de eerste plaats moeten instaan voor het garanderen van de voedselzekerheid (zowel voeding als diervoeding). In de tweede plaats moet getracht worden om ze in te zetten voor materialen en grondstoffen voor de industrie. Vervolgens moeten toepassingen als bodemverbeteraar door compostering of vergisting nagestreefd worden en pas op de vierde plaats dienen ze aangewend te worden als duurzame energiebron.

In het kader van de SIC-aanpak (System Innovation Cycle) werd in dit document een beeld geschetst van het huidige speelveld rond valorisatie van tuinbouwreststromen met bijhorende knelpunten en opportuniteiten, waarbij transdisciplinair en participatief tewerk gegaan werd.

Wanneer de verschillende klassen van tuinbouwreststromen kwantitatief en kwalitatief geëvalueerd worden, kunnen een aantal conclusies getrokken worden. De oogstresten komen jaarlijks vrij in de grootste volumes (ca. 15 000 - 200 000 ton per jaar). Deze stromen zijn echter heterogeen en bestaan voornamelijk uit blad- en stengelmateriaal en ondermaatse biomassa. Bovendien komen ze ruimtelijk verspreid voor en is er risico op contaminatie met pesticiden, mycotoxines en aarde. De combinatie van deze aspecten kan de valorisatie in de voedings- of voederketen serieus belemmeren (vb. Novel Food). De hoeveelheden gerapporteerde productieverliezen bij de verwerkende industrie zijn homogener en kleiner (ca. 3000 – 20 000 ton per jaar). Deze worden op dit moment echter in veel gevallen reeds gevaloriseerd in de humane en dierlijke voeding. Tot slot zijn de reststromen die ontstaan op de veiling de kleinste categorie (400 – 2000 ton). Ondanks de stimulerende huidige regelgeving, worden deze stromen nog voornamelijk uitgereden op het land. Desondanks biedt deze categorie van reststromen tal van opportuniteiten voor toepassingen in de humane voeding en de diervoeding, gezien ze vaak van goede kwaliteit zijn en bovendien geconcentreerd vrijkomen op de veiling.
Wanneer het cascadeprincipe en de ladder van Moerman als maatstaf worden gebruikt, dienen de reststromen in eerste instantie opnieuw een voedingstoepassing te krijgen. Hierbinnen kunnen ze enerzijds rechtstreeks op de markt gebracht worden met enkel een minimale stabilisatie. Anderzijds kunnen ze ook geraffineerd worden in diverse fracties die op hun beurt elk een andere toepassing krijgen zoals vezels, eiwitten of secundaire metabolieten. Hiervan zijn al een aantal succesvolle voorbeelden op de markt zoals Provalor, Scelta, Smood en Ecotreasures. Wanneer toepassing in de humane voeding niet mogelijk is of wanneer uit de verwerking tot humane voeding opnieuw reststromen vrijkomen, kunnen deze onder de vorm van diervoeding onrechtstreeks opnieuw bijdragen tot de voedingsketen. Valorisatie tot diervoeding is bijgevolg de volgende trap in de cascade van waardebehoud, na voedingstoepassingen. Ook hier kunnen ze enerzijds an sich als ruwvoeder op de markt gebracht worden of anderzijds als geraffineerd ingrediënt. Een belangrijk aspect hierbij is dat tuinbouwreststromen omwille van hun beperkt volume niet geschikt zijn om op grote schaal als bulkingrediënt in veevoeding te gebruiken. Ze kunnen wel een toevoeging zijn van het huidige aanbod of wanneer ze specifieke functionele eigenschappen bezitten, in relatief kleine hoeveelheden bijgemengd worden in het voeder. Wanneer het cascadeprincipe verder wordt gehanteerd, volgen na voeding en voeder, toepassingen als farmaceutica, cosmetica, biociden, materialen, compostering en vergisting.

De voornaamste conclusies voor deze verschillende sectoren lopen grotendeels gelijk. Enerzijds wordt het heel duidelijk dat er een hele reeks aan mogelijkheden ligt voor tuinbouwreststromen binnen deze verschillende sectoren, die in sommige gevallen al commercieel geëxploiteerd worden. Veel initiatieven rond herwaardering en verwerking bevinden zich echter nog in de ontwikkelingsfase. Een aantal problemen die frequent teruggeren bij de verschillende sectoren zijn:

- een variabele kwaliteit van de reststromen die het moeilijk maakt een product met een continue eindkwaliteit te garanderen alsook de beperkt houdbaarheid. Daarenboven beïnvloeden stabilisatie- en verwerkingstechnieken vaak de samenstelling van de reststromen, wat een invloed kan hebben op de extraheerbaarheid, de stabiliteit en de functionaliteit. Deze variabele samenstelling staat in schril contrast staan met de hoge eisen van de sectoren naar homogeniteit en kwaliteit.
- de meeste tuinbouwreststromen zijn onderhevig aan snel bederf wat naast risico op contaminatie ook opnieuw de samenstelling van de stromen kan beïnvloeden.
- de beperkte hoeveelheden van de verschillende tuinbouwreststromen. Deze zijn in de meeste gevallen te klein om een specifieke valorisatiemethode van grondstof te voorzien. Een oplossing hiervoor kan zijn om verschillende stromen te combineren om op die manier tot een voldoende groot en constant aanbod te komen.

Deze problemen kunnen deels weggewerkt worden door een geschikte organisatievorm. Er is dus een sterke rol weggelegd voor het case-specifiek onderzoeken van diverse implementatievormen en logistieke ketens, gezien deze een impact hebben op zowel economische, logistieke als organisatorische aspecten van het valorisatietraject en op die manier kunnen bijdragen door het wegwerken van een aantal geïdentificeerde
knelpunten zoals seizoenaaliteit, beperkte houdbaarheid, beperkte volumes en ruimtelijke diffusie. Voorts kan de introductie van tuinbouwreststromen in deze sectoren een duwtje in de rug krijgen door meer wetenschappelijk onderzoek rond groene extractiemethodes, kwalitatieve stabilisatie technieken en rond de impact van verwerking op het gedrag, de functionaliteit en de biobeschikbaarheid van bepaalde inhoudsstoffen.

Ten slotte wordt de beschikbaarheid, prijs en toepassing van tuinbouwreststromen ook mede bepaald door de wet- en regelgeving waardoor deze dus een regulerend effect kunnen uitoefenen op de haalbaarheid van verschillende pistes (zoals ook duidelijk wordt uit § 6). Recent zijn er veel ontwikkelingen gebeurd rond de definitie van afval, end-of-waste en bijproducten waarmee getracht wordt om reststromen niet meteen een afvallabel te geven en waardoor de deur naar valorisatie open blijft. Het is echter vaak de geldende wetgeving in de diverse sectoren waarin de reststroom gevaloriseerd wordt, die de daadwerkelijke valorisatie en implementatie bemoeilijkt (vb. Novel Foods wetgeving) alsook de eisen die de verwerker oplegt aan de gebruikte grondstoffen.

Op basis van dit verkennend onderzoek werd richting gegeven aan case 2 van het GeNeSys project en werden de onderzoekslijnen en –aanpak rond de valorisatie van tuinbouwreststromen bepaald, welke hieronder heel beknopt worden weergegeven. In dit onderzoek zal in eerste instantie gestreefd worden naar hoogwaardigere toepassingen in de menselijke voeding. De uitdaging situeert zich hierbij voornamelijk in de stabilisatie van de reststromen om een langere beschikbaarheid te garanderen ondanks de seizoensgebonden aanvoer. Gezien diverse interessante tuinbouwreststromen slechts in beperkte volumes vrijkomen, wordt de commerciële exploitatie van een bepaalde verwerkingsroute bevorderd wanneer het stabilisatieprincipe breed inzetbaar is voor diverse texturen. Daarnaast dient omgegaan te worden met de variabiliteit aan inputstromen die een constant outputproduct moeten genereren. Een mogelijkheid om hiermee om te gaan is het gebruik maken van flexibele raffinageprocessen die de extractie van specifieke bestanddelen mogelijk maken, zonder functionaliteitsverlies. Ook de voorbehandeling die de vrijstelling van de componenten beïnvloedt, zal hierin een zeer belangrijke rol spelen. Door deze knelpunten weg te halen, kunnen gestabiliseerde, homogene en continu beschikbare stromen gecreëerd worden waarvan de hoogwaardige verwerking of bioraffinage eenvoudiger te realiseren is.
Literatuurlijst

BIRB. (2013). Gegevens uit de markt genomen groenten en fruit zoals vastgesteld door BIRB. Ref Type: Internet Communication

Bolck, C., Ravenstijn, J., & Molenveld, K. (2012). Biobased Plastics Wageningen UR.

Bruns, M., Trienekens, J. H., Omta, S. W. F., Hamer, M., & Petersen, B. (2010). Demand of the meat industry for management support in R&D cooperation projects. *Proceedings of the 9th Wageningen International Conference on Chain and Network Management (WICaNeM)*.

OVAM (2014a). *Ontwerp analysesdocument voor beleidsplan biomassareststromen - draft versie (niet gepubliceerd).*

COMPONENTS ARE NOVEL OXALATE AND SULFATE CONJUGATES OF LACTUCIN AND ITS DERIVATIVES. *Journal of Biological Chemistry*, 275, 26877-26884.

Smakman, G. J. J. (2012). *De grondstoffenbank als nieuw concept voor decentrale bioraffinage* Wageningen, ACRRES - Wageningen UR.

Vlaamse overheid & BEMEFA (2012). *Actieplan Alternatieve Eiwitbronnen (AAE)*.

Wageningen UR (2012). Chances for biomass - Integrated valorisation of biomass resources Wageningen UR.

Bijlage 1: overzicht van de oogstresten in Vlaanderen van openluchtgroenten, glasgroenten en fruit

<table>
<thead>
<tr>
<th>Primaire stroom</th>
<th>Areaal (ha)</th>
<th>Primaire productie (ton)</th>
<th>Type reststroom</th>
<th>Reststroom (ton/ha)</th>
<th>Totale hoeveelheid natte reststroom (ton)</th>
<th>Beschikbaarheid</th>
<th>Bemerkingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Openluchtgroenten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asperge</td>
<td>240</td>
<td>1680</td>
<td>Loof en schillen</td>
<td>-</td>
<td></td>
<td>mei-juni</td>
<td>Bij de oogst wordt het hart van de kool uitgeboord en blijft de plant staan. Aanpassen oogstmachine nodig om deze resterende plant te oogsten (eventueel in een tweede werkgang).</td>
</tr>
<tr>
<td>Bloemkool</td>
<td>4380</td>
<td>79420</td>
<td>blad- en stengelmaassa</td>
<td>26 (blad) / 7 (stam)</td>
<td>197100</td>
<td>april-november</td>
<td></td>
</tr>
<tr>
<td>Ronen</td>
<td>3430</td>
<td>37730</td>
<td>blad- en stengelmaassa</td>
<td>10-30</td>
<td>68600</td>
<td>mei-september</td>
<td></td>
</tr>
<tr>
<td>Broccoli</td>
<td>250</td>
<td>2500</td>
<td>blad- en stengelmaassa</td>
<td>30-50</td>
<td>10000</td>
<td>juni-juli</td>
<td></td>
</tr>
<tr>
<td>Chicorei</td>
<td>1385</td>
<td>75000</td>
<td>bladmaassa</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Courgette</td>
<td>620</td>
<td>32500</td>
<td>blad- en stengelmaassa</td>
<td>10</td>
<td>6200</td>
<td>november</td>
<td>De erwten worden op het veld gedorsen. De restvegetatie blijft op het land of wordt soms opgeraapt door de landbouwer voor veevoeding.</td>
</tr>
<tr>
<td>Eret</td>
<td>2000</td>
<td>14840</td>
<td>Blad-, stengelmaassa en peulen</td>
<td>20-50</td>
<td>70000</td>
<td>juni-juli</td>
<td></td>
</tr>
<tr>
<td>Knolselder</td>
<td>900</td>
<td>52000</td>
<td>bladmaassa</td>
<td>10</td>
<td>9000</td>
<td>augustus-maart</td>
<td>Gerooid met klembandrooier en afgesneden.</td>
</tr>
<tr>
<td>Peterselie</td>
<td>180</td>
<td>3600</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pompoen</td>
<td>150</td>
<td>6000</td>
<td>-</td>
<td></td>
<td></td>
<td>februari</td>
<td></td>
</tr>
<tr>
<td>Prei</td>
<td>4725</td>
<td>182075</td>
<td>bladmaassa (groene deel)</td>
<td>10</td>
<td>70875</td>
<td>juli-april</td>
<td>Groene deel wordt afgesneden om de prei horizontaal in veilingbakken te laten passen.</td>
</tr>
<tr>
<td>Raap</td>
<td>370</td>
<td>15500</td>
<td>blad- en stengelmaassa</td>
<td>10</td>
<td>3700</td>
<td>oktober-juni</td>
<td></td>
</tr>
<tr>
<td>Rode kool</td>
<td>300</td>
<td>18000</td>
<td>Buitenste bladeren</td>
<td>40-60</td>
<td>15000</td>
<td>juli-maart</td>
<td>Plant blijft staan en kool wordt eruit gesneden. Aanpassen oogstmachine nodig.</td>
</tr>
<tr>
<td>Savoikoil</td>
<td>300</td>
<td>10500</td>
<td>Buitenste bladeren</td>
<td>40-60</td>
<td>15000</td>
<td>juli-februari</td>
<td></td>
</tr>
<tr>
<td>Slorscheener</td>
<td>700</td>
<td>13300</td>
<td>blad- en stengelmaassa</td>
<td>10</td>
<td>7000</td>
<td>oktober-maart</td>
<td></td>
</tr>
<tr>
<td>Selder (wit en groen)</td>
<td>350</td>
<td>18750</td>
<td>blad- en stengelmaassa</td>
<td>50-60</td>
<td>19250</td>
<td>maart-juni</td>
<td>Nood aan aanpassing oogstmachine om te kunnen mee oogsten, natte oogstomstandigheden.</td>
</tr>
<tr>
<td>Spinazie</td>
<td>1722</td>
<td>93150</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spruiten</td>
<td>2300</td>
<td>45400</td>
<td>Stengelmaassa</td>
<td>50-70</td>
<td>138000</td>
<td>oktober-maart</td>
<td>Spruitkoolstokken worden vermalen door oogstmachine en blijven achter op veld. Vergisting blijkt niet optimaal.</td>
</tr>
<tr>
<td>Uien</td>
<td>1308</td>
<td>48337</td>
<td>Rebui</td>
<td>10</td>
<td>13080</td>
<td>jaar rond</td>
<td></td>
</tr>
<tr>
<td>Witloof</td>
<td>772</td>
<td>19300</td>
<td>wortelmaassa na forcerie</td>
<td>25</td>
<td>19300</td>
<td>september</td>
<td>Plastic touwen en clips zitten verweven tussen de stengels wat compostering bemoeilijkt. Momenteel wordt deze reststroom verwijderd tegen betaling (€50/ton).</td>
</tr>
<tr>
<td>Witloofwortelen</td>
<td>595</td>
<td>46800</td>
<td>bladjes</td>
<td>25</td>
<td>5950</td>
<td>jaar rond</td>
<td></td>
</tr>
<tr>
<td>Witte kool</td>
<td>400</td>
<td>26000</td>
<td>Buitenste bladeren</td>
<td>30-50</td>
<td>20000</td>
<td>juli-maart</td>
<td>Plastic touwen en clips zitten verweven tussen de stengels wat compostering bemoeilijkt. Momenteel wordt deze reststroom verwijderd tegen betaling (€50/ton).</td>
</tr>
<tr>
<td>Wortelen</td>
<td>2780</td>
<td>166800</td>
<td>bladmaassa</td>
<td>20-30</td>
<td>69500</td>
<td>jaar rond</td>
<td>Enkel bij start van oogsten is loof bruikbaar.</td>
</tr>
<tr>
<td>Glasgroenten</td>
<td>1009182</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aubergine</td>
<td>20</td>
<td>8000</td>
<td>-</td>
<td></td>
<td></td>
<td>mei-november</td>
<td></td>
</tr>
<tr>
<td>komkommer</td>
<td>65</td>
<td>27300</td>
<td>1 (productieverlies na oogst)</td>
<td>25 (plantenmateriaal)</td>
<td>1625</td>
<td>maart-juni</td>
<td>Plastic touwen en clips zitten verweven tussen de stengels wat compostering bemoeilijkt. Momenteel wordt deze reststroom verwijderd tegen betaling (€50/ton).</td>
</tr>
<tr>
<td>kroopsla</td>
<td>950</td>
<td>47500</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>paprika</td>
<td>96</td>
<td>27840</td>
<td>Stengels en productieverlies na oogst</td>
<td>1 (productieverlies na oogst)</td>
<td>2880</td>
<td>jaar rond</td>
<td></td>
</tr>
<tr>
<td>tomaat</td>
<td>481</td>
<td>227680</td>
<td>Stengels en productieverlies na oogst</td>
<td>1 (productieverlies na oogst)</td>
<td>14430</td>
<td>jaar rond</td>
<td></td>
</tr>
<tr>
<td>veldsla</td>
<td>225</td>
<td>2250</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruit</td>
<td>340570</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>appel</td>
<td>7752</td>
<td>288405</td>
<td>Schil- en rebui appelen</td>
<td>Resp. 8 % en 11 %</td>
<td>54800</td>
<td>jaar rond</td>
<td>Schilappelen vinden reeds een afzetmarkt in de verwerkin industrie en rebui appelen hier en daar in de veevoeding.</td>
</tr>
<tr>
<td>peer</td>
<td>8216</td>
<td>284827</td>
<td>Rebui</td>
<td>3 %</td>
<td>8545</td>
<td>jaar rond</td>
<td>Voor peren bestaat nog vrijwel geen verwerkend circuit in Vlaanderen.</td>
</tr>
<tr>
<td>aardbei</td>
<td>1550</td>
<td>37500</td>
<td>-</td>
<td>2-10%</td>
<td>22500</td>
<td>april-september</td>
<td>Verliesposten bij aardbei zijn afhankelijk van de teelt, van parasieten en van klimatologische aspecten.</td>
</tr>
<tr>
<td>kers</td>
<td>1211</td>
<td>7550</td>
<td>-</td>
<td>5-30 %</td>
<td>1133</td>
<td>juli-augustus</td>
<td>Dit cijfer reikt de kersen in die verloren gaan door parasieten (rot, insecten enz.) of door klimatologische omstandigheden (barsten van kersen na de regen).</td>
</tr>
</tbody>
</table>

2: stambonen, stamslabonen, tuinbonen en veldbonen

- stengelmaassa, stambonen en veldbonen
Deze ILVO mededeling vormt een geheel met ILVO-mededeling 164, 166 en 167
Vermenigvuldiging of overname van gegevens toegestaan mits duidelijke bronvermelding:
Kips, L & Van Droogenbroeck, B. (2014). Valorisatie van groente- en fruitreststromen:
opportuniteiten en knelpunten. ILVO-mededeling 165. 70 p

Aansprakelijkheidsbeperking
Deze publicatie werd door ILVO met de meeste zorg en nauwkeurigheid opgesteld. Er wordt evenwel
geen enkele garantie gegeven omtrent de juistheid of de volledigheid van de informatie in deze
publicatie. De gebruiker van deze publicatie ziet af van elke klacht tegen ILVO of zijn ambtenaren,
van welke aard ook, met betrekking tot het gebruik van de via deze publicatie beschikbaar gestelde
informatie.
In geen geval zal ILVO of zijn ambtenaren aansprakelijk gesteld kunnen worden voor eventuele
nadelige gevolgen die voortvloeien uit het gebruik van de via deze publicatie beschikbaar gestelde
informatie.