Mededeling ILVO nr 77

Themanummer Nieuwsgolf
april 2010
Sierteelt
Mededeling ILVO nr 77

Themanummer Nieuwsgolf
april 2010
Sierteelt

Juli 2010

Samenstelling:
Johan VAN HUYLENBROECK
Karin VAN PETEGHEM

Directie
Burgemeester Van Gansberghelaan 96
B-9820 Merelbeke
tel. 09 272 25 00 – fax. 09 272 25 01
e-mail: ilvo@ilvo.vlaanderen.be
http://www.ilvo.vlaanderen.be

Wettelijk Depot: D/2010/10.970/77

ISSN 1784-3197
Inhoud

1. Voorwoord ... 9
2. Genetica en Veredeling .. 12
 2.1. Ontwikkelen van noviteiten: interactie tussen onderzoek en praktijk 12
 1. Inleiding ... 12
 2. Publiek-private samenwerking in veredeling ... 12
 3. Opbouw van know-how .. 13
 4. Kennisoverdracht naar de sector en onderzoek op maat 13
 2.2. Doorbreken van kruisingsbarrières .. 15
 1. Soortkruisingen en embryo rescue ... 15
 2. Voorbeelden bij Buddleja en Hibiscus ... 16
 3. Protoplastfusies .. 16
 2.3. Meiotische en mitotische polyploïdisatie .. 18
 1. Mitotische polyploïdisatie .. 18
 2. Meiotische polyploïdisatie .. 21
 2.4. Is meer beter? polyploïden en stressresistentie 23
 2.5. Cytogenetische technieken als ondersteuning bij veredeling van sierplanten ... 25
 1. Ploïdiebepalingen .. 25
 2. Genoomgroottebepalingen ... 26
 3. In situ hybridisation .. 27
 2.6. Moleculair-genetisch onderzoek, ook van belang in sierteelt 30
 2.7. Het in kaart brengen van resistentie tegen meeldauw in roos 32
 2.8. Genetische studie van bloemkleur en plantkwaliteitskenmerken in azalea ... 34
 2.9. Identificatie van rassen, erkenning en fraudebestrijding 36
 2.10. Bloeiregulatie en -kwaliteit bij azalea: interactie tussen genetisch, fysiologische en teeltgebonden factoren ... 38
 1. Probleemstelling .. 38
 2. Doelstellingen .. 38
 2.11. Verbeterde ziekteresistentie in sierplanten .. 41
 1. Inleiding ... 41
 2. Veredeling naar resistentere azalea ... 41
 3. Resistentie tegen schimmelziekten in roos .. 42
 4. Biotoetsen voor Chrysant en Buxus ... 44
2.12. Kwekersrechtonderzoek bij het ILVO voor sierteeltgewassen

1. Proefprotocol ... 45
2. Resultaten .. 46

2.13. Cryopreservatie van de azaleagenenbank

1. Genenbank ... 47
2. Cryopreservatie .. 47

2.14. Laat de plant spreken: fotosynthesemetingen laten een betere sturing van het serreclimaat toe.. 49

2.15. SIETINET ... Sierteelt Technologie en Innovatie Netwerk ... 50

3. Gewasbescherming ... 51

3.1. Het onderzoeks domein Gewasbescherming ten dienste van sector en beleid .. 51
3.2. ‘Pest Risk Analyse’ van quarantaine- en alert-organismen ... 53
1. PRA voor Fusarium foetens .. 53
2. PRA voor Xanthomonas axonopodis pathovar dieffenbachiae .. 54

3.3. Bepalen van het voorkomen van schadelijke organismen voor planten... 56
3.4. Het DiagnoseCentrum voor Planten (DCP), een betrouwbare partner voor de sierteeltsector ... 61

3.5. Problemen bij de bestrijding van insecten en mijten in de sierteelt en geïntegreerde beheersing als perspectief ... 64
1. Probleemstelling .. 64
2. De geleide chemische beheersing .. 65
3. De geïntegreerde beheersing en ILVO onderzoek ... 65
4. Noodzaak aan bijkomend onderzoek .. 69
5. Besluit .. 70

3.6. Schimmelziekten met een belangrijke impact: nieuwe ontwikkelingen en inzichten .. 71
1. Japanse roest (Puccinia horiana) bij potchrysant ... 71
2. Phytophthora ramorum bij rododendron ... 72
3. Cylindrocladium buxicola bij Buxus ... 73

3.7. Optimalisatie van de spuittechniek- en apparatuur in de sierteelt ... 75
1. Inleiding .. 75
2. Doelstellingen ... 75
3. Enkele realisaties .. 75
4. Besluit .. 76

3.8. De invloed van de bemesting op de gewasontwikkeling en de knolkwaliteit ... 77
1. Materiaal en methoden .. 77
2. Resultaten teeltseizoen 2005 .. 77
3. Resultaten teeltseizoen 2006 .. 79
4. Besluiten ... 81
4. Sierteelt en maatschappij .. 82
 4.1. Toekomstverkenning MIRA-S 2009 – Sector Glastuinbouw - Wat staat de sierteelt te wachten in 2030? .. 82
 1. Probleemstelling... 82
 2. Beschrijving glastuinbouwsector ... 82
 3. Scenario-studie .. 82
 4. Emissies ... 83
 5. Trajectsачets transitie richting visionaire scenario .. 83
 4.2. BACK TO THE FUTURE – Een kritische kijk op de sierteelt in Vlaanderen door bevoorrechte getuigen ... 85
 4.3. Ondernemerschap als drijvende kracht voor duurzame ontwikkeling 88
 1. Ondernemer speelt sleutelrol in duurzame land- en tuinbouwontwikkeling 88
 2. Ondernemerschap en de ‘duurzaamheidsster’ (MOTIFS) 88
 3. Workshop levert inzicht in belangrijke thema’s ... 89
 4.4. Beïnvloedende factoren voor het introduceren van reductietechnieken voor gewasbeschermingsmiddelen en nutriënten door Vlaamse siertelers 91
 1. Probleemstelling ... 91
 2. Inventarisatie reductiemogelijkheden ... 91
 3. Selectie reductiemogelijkheden ... 92
 4. Enquêtering bedrijven ... 92
 5. Beïnvloedende factoren ... 92
 6. Conclusie .. 93
 7. Referenties .. 93
 4.5. Het internetgedrag van Vlaamse tuinbouwers : beïnvloedende factoren 94
 1. Probleemstelling ... 94
2. Gebruikersfrequentie van internet ... 94
3. Internettoepassingen ... 94
4. Beïnvloedende factoren ... 95
5. Resultaten ... 95
6. Conclusie : attituden bedrijfsleider spelen grote rol 96
7. Referenties : .. 96
4.6. Ontwikkeling van duurzame glastuinbouwzones in Vlaanderen 97
1. Probleemstelling .. 97
2. Resultaten ... 97
3. Verkennende Interviews ... 98
4. Discussiegroepen met tuinders en beleid .. 98
5. Case studie onderzoek .. 99
6. Referenties .. 99
4.7. Maatschappelijke aanvaardbaarheid van grootschalige glastuinbouwclusters 101
1. Voorwoord

Sierteelt neemt binnen het ILVO een voorname plaats in. Logischwijze situeert het meeste onderzoek op sierteeltgewassen zich binnen de Eenheid Plant met diverse projecten omtrent genetica, veredeling, ecofysiologie, gewasbescherming,..., maar eveneens bij Technologie & voeding (o.a. spuittechniek, energie in de kas, oogst- en sorteerapparatuur) en Landbouw & Maatschappij (o.a. socio-economisch onderzoek, inplanting van glaszones) is er aandacht voor sierteelt gerelateerde onderwerpen. De missie van ILVO is erop gericht om basis en toegepast onderzoek uit te voeren enerzijds voor de overheid maar anderzijds nauw aansluitend met de uitdagingen van de Vlaamse boer en tuinder. ILVO werkt dan ook in heel wat onderzoeksprojecten samen met telergroeperingen of individuele bedrijven. Geaccrediteerde laboratoria zoals het Diagnosecentrum voor ziekten en plagen en Agrolab staan ten dienste van elke individuele sierteler.

Vlaanderen staat in sierteeltkennis en -onderzoek zeer sterk. Nergens in Europa wordt zoveel openbare kennis rond sierteelt gegenereerd. Om deze positie te verstevigen heeft ILVO samen met het PCS, UGent en HoGent de Technopool Sierteelt opgericht. De complementaire expertise en kennis van de 4 onderzoeksinstellingen laat toe om complexe innovatievragen vanuit de sector te beantwoorden. Dat ILVO echt gelooft in de toekomst mag ook blijken uit de belangrijke investering in een nieuw serre- en onderzoekscomplex dat momenteel in opbouw is.

In dit themanummer van de nieuwsbrief kunnen jullie kennismaken met enkele specifieke onderzoeksthema’s.
Werkten mee aan dit themanummer:

Eenheid Plant:

<table>
<thead>
<tr>
<th>Naam</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evelien Calsyn</td>
<td>evelien.calsyn@ilvo.vlaanderen.be</td>
</tr>
<tr>
<td>Hans Casteels</td>
<td>hans.casteels@ilvo.vlaanderen.be</td>
</tr>
<tr>
<td>Filip De Brouwer</td>
<td>filip.debrouwer@ilvo.vlaanderen.be</td>
</tr>
<tr>
<td>Ellen De Keyser</td>
<td>ellen.dekeyser@ilvo.vlaanderen.be</td>
</tr>
<tr>
<td>Jan De Riek</td>
<td>jan.deriek@ilvo.vlaanderen.be</td>
</tr>
<tr>
<td>Alex De Vliegher</td>
<td>alex.devliegher@ilvo.vlaanderen.be</td>
</tr>
<tr>
<td>Lutgarde De Wael</td>
<td>luttgard.dewael@ilvo.vlaanderen.be</td>
</tr>
<tr>
<td>Emmy Dhooghe</td>
<td>emmy.dhooghe@ilvo.vlaanderen.be</td>
</tr>
<tr>
<td>Tom Eeckhaut</td>
<td>tom.eeckhaut@ilvo.vlaanderen.be</td>
</tr>
<tr>
<td>Kurt Heungens</td>
<td>kurt.heungens@ilvo.vlaanderen.be</td>
</tr>
<tr>
<td>Leen Leus</td>
<td>leen.leus@ilvo.vlaanderen.be</td>
</tr>
<tr>
<td>Peter Lootens</td>
<td>peter.lootens@ilvo.vlaanderen.be</td>
</tr>
<tr>
<td>Martine Maes</td>
<td>martine.maes@ilvo.vlaanderen.be</td>
</tr>
<tr>
<td>Joke Pannecocque</td>
<td>joke.pannecocque@ilvo.vlaanderen.be</td>
</tr>
<tr>
<td>Johan Van Huylenbroeck</td>
<td>johan.vanhuylenbroeck@ilvo.vlaanderen.be</td>
</tr>
<tr>
<td>Katrijn Van Laere</td>
<td>katrijn.vanlaere@ilvo.vlaanderen.be</td>
</tr>
<tr>
<td>Johan Van Vaerenbergh</td>
<td>johan.vanaerdenbergh@ilvo.vlaanderen.be</td>
</tr>
<tr>
<td>Johan Van Waes</td>
<td>johan.vanwaes@ilvo.vlaanderen.be</td>
</tr>
<tr>
<td>Koen Willekens</td>
<td>koen.willekens@ilvo.vlaanderen.be</td>
</tr>
<tr>
<td>Johan Witters</td>
<td>johan.witters@ilvo.vlaanderen.be</td>
</tr>
</tbody>
</table>

Eenheid Landbouw&Maatschappij:

<table>
<thead>
<tr>
<th>Naam</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elke Rogge</td>
<td>elke.rogge@ilvo.vlaanderen.be</td>
</tr>
<tr>
<td>Nicole Taragola</td>
<td>nicole.taragola@ilvo.vlaanderen.be</td>
</tr>
<tr>
<td>Bert Vander Vennet</td>
<td>bert.vandervennet@ilvo.vlaanderen.be</td>
</tr>
<tr>
<td>Veerle Verguts</td>
<td>veerle.verguts@ilvo.vlaanderen.be</td>
</tr>
</tbody>
</table>
Eenheid Technologie&Voeding:
Dieter Foqué dieter.foque@ilvo.vlaanderen.be
David Nuyttens david.nuyttens@ilvo.vlaanderen.be

Beleidsdomein Landbouw&Visserij:
Dirk Bergen dirk.bergen@ilvo.vlaanderen.be
Adrien Saverwyns adrien.saverwyns@lv.vlaanderen.be
2. **GENETICA EN VEREDELING**

2.1. **ONTWIKKELLEN VAN NOVITEITEN: INTERACTIE TUSSEN ONDERZOEK EN PRAKTIJK**

Samen sterk in innovatie! ILVO werkt voor het veredelingsonderzoek nauw samen met de Vlaamse sector. Telers ondersteunen wetenschappelijk onderzoek, de motor van innovatie. Valorisatie van de onderzoeksresultaten gebeurt door Vlaamse bedrijven.

1. **Inleiding**

2. **Publiek-private samenwerking in veredeling**

Het ILVO heeft momenteel in de sierteelt twee veredelingsprogramma’s lopen enerzijds voor sierboomkwekerij (voornamelijk bloeiende struiken en buitenrozen) en anderzijds voor azalea. Voor beide veredelingsprogramma’s is er een publiek private samenwerking opgestart met de Vlaamse bedrijfswereld. Telkens gaat het om een groep van een twintigtal vooruitstrevende productiebedrijven die gezamenlijk investeren in het onderzoek en de ontwikkeling van nieuwwijden door het ILVO. In ruil krijgen deze bedrijven het recht om de ontwikkelde nieuwwijden op de markt brengen. Om deze samenwerking mogelijk te maken zijn twee coöperatieve vennootschappen opgericht namelijk BEST-select (sinds 2000) voor de sierboomkwekerij en Azanova (sinds 2008) voor de azaleaveredeling. Deze samenwerkingsverbanden beperken zich echter niet tot louter financieren van het veredelingsonderzoek. Zij engageren zich eveneens voor het ontwikkelen van een
gezamenlijk visie omtrent marketing van de nieuwsigheden. Op deze manier is het voor een kleinere onderneming ook mogelijk om aan productinnovatie te doen.

Het veredelingswerk binnen ILVO focust zich op de ontwikkeling van nieuwe cultivars met een duidelijk toegevoegde waarde, zoals nieuwe bloemvormen, geur bij azalea, steriliteit en ziekteresistentie. Ontwikkeling van gezonde planten vormt de rode draad in de vele veredelingsactiviteiten van ILVO en is de basis van een duurzame sierteelt.

Momenteel brengt BEST-select reeds 14 verschillende producten van ILVO op de markt (zie www.bestselect.be) terwijl Azanova tijdens de Floraliën voor het eerst uitpakt met de AIKO® in drie verschillende kleuren roze, wit en rood (www.azanova.be).

3. Opbouw van know-how

Naast de eigen veredelingsprogramma’s werkt ILVO vooral aan de ontwikkeling van nieuwe technologieën die bruikbaar zijn bij de veredeling van nieuwe cultivars. Het onderzoek richt zich hierbij op diverse aspecten zoals het doorbreken van kruisingsbarrières bij planten, protoplastfusies, cytogenetische technieken en alternatieve methoden voor chromosoomverdubbeling. Daarnaast gebruiken we moleculaire merkers voor verwantschaps- en ouderschapsanalyses en voor identificatie van rassen en trachten we een inzicht te krijgen in de genetische achtergrond van bloemontwikkeling en bloemkleur bij azalea. Op vlak van ziekteresistentie ligt de focus op het ontwikkelen van biotootsen voor een snelle screening, de studie van de afweermechanismen van de plant tegen schimmels en de overerving van bepaalde resistentiemechanismen. Tevens zoeken we naar moleculaire merkers die gelinkt zijn met meeldauwresistentie bij roos.

4. Kennisoverdracht naar de sector en onderzoek op maat

Belangrijk is wel dat nieuwe onderzoeksresultaten een vlotte doorstroming kennen naar het bedrijfsleven. Een deel van onze publieke onderzoeksprojecten wordt gefinancierd door het IWT-landbouwkundig onderzoek. Bij dergelijke projecten participeren bedrijven of de volledige sector in de gebruikerscommissie en hebben ze aldus de kans om het onderzoek op de voet te volgen en op de eerste rij kennis te nemen van de resultaten.

Een ander doorstromingskanaal is het project SIETINET. Het doel van dit project is om sierteeltbedrijven en onderzoekcentra met elkaar laagdrempelig in contact te brengen en bedrijven te stimuleren om innovaties te gaan implementeren.

Daarnaast bieden de KMO-projecten van het IWT heel wat kansen aan Vlaamse bedrijven om kennis te gaan valoriseren en te gaan implementeren in het eigen bedrijf. Hierbij gaat het bedrijf samen met een onderzoeksinrichting aan de slag. Jaarlijks start ILVO verschillende van deze KMO-projecten met sierteeltbedrijven op. Hierdoor kunnen sierteeltbedrijven gebruik maken van de kennis die aanwezig is binnen het ILVO. ILVO helpt hen om de knowhow te hertalen op het eigen bedrijfsniveau en toe te passen op de specifieke planten van het bedrijf. Bij dergelijke projecten blijven alle resultaten eigendom
van het bedrijf en is geheimhouding gegarandeerd. Een mooi voorbeeld van hoe succesvolle samenwerking tussen een Vlaams sierteeltbedrijf en ILVO kan zijn, is de ontwikkeling van de bloeiende Calathea Bicajoux® door de firma Denis-Plants. Gedurende 6 jaar hielp ILVO het bedrijf bij diverse aspecten van het veredelings- en selectieprogramma. Het onderzoeksteam van ILVO slaagde erin om bepaalde bottlenecks binnen het kruisingsprogramma in kaart te brengen en te doorbreken. Ondertussen voert het bedrijf de ontwikkelde technieken volledig zelfstandig uit.

Naast à la carte onderzoek voor sierteeltbedrijven, voeren we op vraag van de klant meer routinematige analyses uit o.a. bepalen van chromosoomaantallen en DNA-fingerprinting.

Contactpersonen: Johan Van Huylenbroeck en Evelien Calsyn
2.2. Doorbreken van kruisingsbarrières

Kruisingsbarrières tussen verschillende soorten vormen een belangrijke rem voor innovatie in sierplantenveredeling. Diverse methodes zijn reeds ontwikkeld om kruisingsbarrières te omzeilen. Zowel sexuele (via embryo rescue of aangepaste bestuivingstechnieken) als somatische hybridisatie (via fusie van protoplasten) zijn mogelijk.

Gedreven door de continue zoektocht naar nieuwheden, is het assortiment aan cultivars binnen de sierteelt de laatste jaren enorm uitgebreid. De introductie van soorten van vreemde oorsprong is hierbij een zeer belangrijke bron. Ook zijn nieuwe cultivars binnen de sierteelt vaak het resultaat van toevalstreffers in zaailingenpopulaties of van spontane mutaties. Daarnaast worden op het ILVO-Eenheid Plant-Toegepaste Genetica en Veredeling ook via gerichte kruisings- en selectieschema’s nieuwe plantencultivars ontwikkeld, die een duidelijke meerwaarde hebben en die beter voldoen aan de toekomstige noden en eisen van de consument. Vaak komt het echter voor dat interessante kenmerken (bv. ziekteresistentie) niet aanwezig zijn binnen commercieel interessante cultivars of soorten, maar wel te vinden zijn bij verwante ‘wilde’ soorten. Het samenbrengen van het genetisch materiaal van deze ‘wilde’ soorten met het genetisch materiaal van de commerciële soorten, noemt interspecifieke hybridisatie.

Interspecifieke hybridisatie is bij sierplanten de belangrijkste methode om innovatie te creëren. Nochtans gaat dit vaak gepaard met barrières die de vorming van een leefbare en vruchtbare F1-hybride beletten. Deze barrières zijn heel divers van aard. Ze kunnen optreden voor (prezygotische barrières) of na (postzygotische barrières) de bevruchting. Diverse strategieën kunnen helpen bij het omzeilen of doorbreken van deze barrières, o.a. embryo rescue, polyploïdisatie (link naar artikel) en protoplastfusie.

1. Soortkruisingen en embryo rescue

2. Voorbeelden bij Buddleja en Hibiscus

In de periode juni-september soortkruisingen uitgevoerd (figuur). De kruisingscombinaties worden gekozen in functie van de morfologische, genetische en cytogenetische eigenschappen van de verschillende soorten en in functie van de vooropgestelde doelstellingen. Bij de soortkruisingen komen verschillende barrières voor, zoals abortie van de vruchten in een vroegtijdig stadium, slecht ontwikkeld endosperm, slechte kieming van de zaden, ... Om deze barrières te omzeilen worden de vruchten ongeveer 11 weken na de bestuiving geoogst en worden de embryo’s op een kunstmatige voedingsbodem geïnitieerd (figuur). De bekomen in-vitro planten (figuur) worden nadien afgehard in de serre en uitgeplant op het veld voor verdere evaluatie en selectie.

Door toepassen van deze embryo rescue techniek kon een grote F1 populatie met Buddleja davidii x Buddleja lindleyana en Buddleja alternifolia x Buddleja crispa nakomelingen opgebouwd worden. Het hybride karakter van de nakomelingen uit de beide kruisingspopulaties werd geanalyseerd via moleculaire en cytogenetische technieken. Een aantal nakomelingen werden geselecteerd (op basis van hun steriliteit, compacte groei, ...) en vermeerderd voor verdere evaluatie.

Bij Hibiscus resulteerden kruisingen tussen H. syriacus en H. paramutabilis en het toepassen van embryo rescue in een grote populatie F1 nakomelingen, waarvan het hybride karakter geverifieerd werd via AFLP en morfologische parameters. Deze F1 planten vormden een zeer uniforme populatie. Via zelfbestuiving en open bestuiving werd een F2 populatie opgebouwd waarin de uitsplitsing van kenmerken duidelijk te zien is. Een aantal planten uit deze F2 populatie werden geselecteerd (op basis van hun bloemvorm, bloemkleur en plantgroei) en vermeerderd voor verdere evaluatie.

3. Protoplastfusies

Sexuele interspecifieke kruisingen gaan vaak gepaard met een aantal typische problemen, zoals gebrek aan pollendoorgroei, zaadabortie, albinisme. Deels werden hiervoor al oplossingen ontwikkeld (zie hierboven). Uiteraard is de toepasbaarheid van deze oplossingen beperkt. Via protoplastcultuur wordt nu daarom ook voor diverse gewassen een alternatief voor sexuele kruisingen ontwikkeld. Protoplasten zijn cellen waarvan de
celwand enzymatisch werd verwijderd, wat fusie tussen verschillende protoplasten mogelijk maakt, ook als ze van verschillende soorten afkomstig zijn.

Het uitvoeren van somatische fusies vergt efficiënte protocols voor (i) de isolatie van protoplasten, (ii) de elektrische of chemische fusie van protoplasten en (iii) de regeneratie van fusieproducten. Daarnaast dient ook gewerkt te worden aan selectieprotocols, aangezien fusietechnieken zowel heterokaryons (fusie tussen verschillende soorten, zoals gewenst), homokaryons (fusie van dezelfde soorten) en ongefusioneerde protoplasten opleveren. Ook voor cytoplasmatisch DNA zijn alle mogelijke fusietypes mogelijk.

‘Klassieke’ fusie van protoplasten is symmetrisch, aangezien twee volledige genomen met elkaar worden gefuseerd. Het is echter mogelijk het genoom van 1 van de partners (de donor) te fragmenteren en slechts een gedeelte van het genoom te laten samensmelten met het genoom van de andere partner (de acceptor). Een dusdanig bekomen fusieproduct zou de noodzaak om een reeks opeenvolgende terugkruisingen met een van beide ouders te maken vermijden. Bovendien kunnen we ook verwachten dat het regeneratieprotocol van een fusieproduct sterk gelijk op dat van de acceptor, wat voor de eigenlijke fusie kan op punt gesteld worden. Uiteraard vereisen dergelijke asymmetrische fusies het uitwerken van een of meerdere fragmentatieprotocols. Deze zijn meestal gebaseerd op DNA-fragmentatie door UV-licht of chromosoomspreiding door mitose-inhibitoren in combinatie met ultracentrifugatie; de eerste techniek fragmenteert alle chromosomen, de tweede kapselt ze apart in zgn. microprotoplasten. Zowel chromosoomfragmenten als microprotoplasten kunnen met een volledige acceptor gefusioneerde worden. Screening van fusieproducten achteraf is mogelijk met moleculaire en cytogenetische technieken.

Aan het ILVO lopen een aantal recent opgestarte onderzoeksprojecten met als doel het uitwerken van fragmentatie- en regeneratieprotocols op protoplasten van Araceae en Chrysanthemum. Isolatie van protoplasten werd voor beide groepen geoptimaliseerd en voor een beperkt aantal genotypes werd ook een begin van regeneratie bekomen (figuur). Inleidende experimenten rond fusie en fragmentatie zijn eveneens opgestart.

Spathiphyllum wallisii protoplast (links) en microkolonie (midden); Chrysanthemum indicum callus uit protoplasten (rechts)

Contactpersonen: Katrijn Van Laere en Tom Eeckhaut
2.3. MEIOTISCHE EN MITOTISCHE POLYPLOÏDISATIE

Ploidieveredeling kan een belangrijke bijdrage leveren aan de ontwikkeling van nieuwe cultivars en rassen, ook bij sierteeltgewassen. Bij ILVO-Eenheid Plant-Toegepaste Genetica en Veredeling worden protocols ontwikkeld zowel voor mitotische chromosoomverdubbeling als voor meiotische polyploïdisatie (ongereduceerde gameten) bij sierteeltgewassen.

Algemeen wordt de term ploïdie of ploïdiegraad gebruikt om uit te drukken hoeveel keer de basisset chromosomen in de celkernen van een organisme aanwezig is. Bij heel wat organismen is in elk individu één chromosoomset afkomstig van de moeder en één van de vader. Organismen met 2 chromosoomsets noemt men diploïd. Een plant is triploïd als de volledige set chromosomen in elke plantencel 3 keer voorkomt, tetraploïd als de set 4 maal voorkomt, enz.. Men spreekt van polyploïden vanaf wanneer de ploïdiegraad hoger is dan twee. Mensen, dieren en de meeste wilde planten zijn diploïd. Bij dieren zijn polyploïden meestal niet leefbaar, bij planten wel.

Polyploïdisatie (=verdubbeling van het aantal chromosoomsets) heeft een voorname rol gespeeld in de evolutieve ontwikkeling van heel wat plantenspecies. Er wordt geschat dat 70% van de angiospermen, waaronder de meeste economisch relevante plantensoorten polyploïd zijn. Ploidieveredeling heeft de laatste jaren eveneens een belangrijke bijdrage geleverd aan de ontwikkeling van nieuwe cultivars en rassen, voornamelijk bij landbouwgewassen, in mindere mate bij sierteeltgewassen. Bij ILVO-Eenheid Plant, Toegepaste Genetica en Veredeling gaat de aandacht enerzijds uit naar het opstellen van protocols voor mitotische chromosoomverdubbeling bij verschillende sierteeltgewassen en anderzijds naar de mogelijkheden van meiotische polyploïdisatie bij sierteeltgewassen d.m.v. ongereduceerde gameten.

1. Mitotische polyploïdisatie

chromosoomverdubbelde planten gebeurd met de flow cytometer of via chromosoomtellingen.

Voor de ontwikkeling van polyploïden dient heel wat onderzoek te gebeuren naar de meest efficiënte methode. Een correcte evaluatie van verkregen polyploïden is telkens noodzakelijk.

Bij de verdeling van sierplanten aan ILVO-Eenheid Plant-Toegepaste Genetica en Veredeling wordt polyploïdisatie gebruikt om verschillende redenen:

1. **Om kruisingsouders op gelijk ploidieniveau te brengen.**

Boven: morfologie van de chromosoomverdubbelde B. globosa (4x) vergeleken met de niet chromosoomverdubbelde B. globosa (2x). Onder: bloemmorfologie van F1 nakomelingen B. davidii x B. globosa (4x), vergeleken met de bloemmorfologie van de ouderplanten.
2. **Om gewenste morfologische veranderingen te induceren.**

Spathiphyllum wallisii werd gepolyploidiseerd door hoog-regeneratief somatisch weefsel te behandelen met mitose-inhibitoren. De hieruit resulterende polyploïden beschikken over een duidelijk gewijzigde bloem- en bladmorfologie t.o.v de originele diploïden. Zo was de bladlengte/bladbreedte verhouding bij polyploïden duidelijk kleiner, en de bladbasishoek significant groter. Polyploïden hebben met andere woorden bredere bladeren. Ook bij bloemen werd hetzelfde effect waargenomen. Verder waren zowel het blad als de bloemsteel dikker en werden minder bladeren gevormd. Deze macroscopische verschillen zijn een gevolg van de significant grotere cellen en celkernen bij tetraploïden.

3. **Om steriele planten te creëren**

![Morfologie van Hibiscus syriacus ‘Azurri’](image-url)
2. Meiotische polyploïdisatie

Ongereducteerde (2n) gameten zijn geslachtszellen die hetzelfde ploidiegetal hebben als de plant die ze produceert. Het kan zowel om eicellen als pollen gaan. Normaal zorgt de meiose ervoor dat geslachtszellen slechts de helft van de chromosomen van de moederplant hebben. Het is echter mogelijk dat de meiose verstoord of belemmerd wordt met ongereducteerde gameten tot gevolg.

Ongereducteerde gameten zijn evolutionair gezien van groot belang aangezien ze polyploïdie mogelijk gemaakt hebben. Voorbeelden van door 2n gameten ontstane polyploïde sierplanten zijn *Ageratum*, *Campanula*, *Coreopsis*, *Cyclamen*, *Gaillardia*, *Primula*, *Rosa*, *Rudbeckia*, *Tagetes*, *Viola*, *Begonia*, *Impatiens* en *Kalanchoë*.

De exploitatie van ongereducteerde gameten bij veredeling van sierplanten biedt nieuwe horizonten bij de ontwikkeling van nieuwe gewassen en bij het inkruisen van eigenschappen uit andere soorten. Tegenover mitotische polyploïdisatie biedt meiotische polyploïdisatie duidelijk een aantal voordelen:

- Er wordt geen gebruik gemaakt van chemicaliën. Het is een natuurlijke methode om polyploïden te verkrijgen.
- Meiotische polyploïden kunnen het resultaat zijn van homoeologe recombinatie, wat een bron is van genetische variatie. De genetische variatie bij polyploïden bekomen met behulp van ongereducteerde gameten is dus veel groter.
- Bij meiotische polyploïden zijn de verkregen genotypen veelal volledig polyploid, tegenover mixoploïden en ploïdiechimeren bij mitotische polyploïdisatie.
- Door gebruik van ongereducteerde gameten kan men in 1 stap triplioïde planten bekomen.

Aan ILVO-Eenheid Plant-Toegepaste Genetica en Veredeling wordt onderzoek verricht naar ongereducteerde gameten bij *Begonia*. In dit onderzoek komen 3 aspecten aan bod: detectie, inductie en gebruik van 2n pollen.

Detectie

Detectie van ongereducteerd pollen kan gebeuren op verschillende manieren: (1) meten van DNA-inhoud van het pollen via de flow cytometer, (2) meten van de pollengrootte m.b.v. microscopie, (3) analyse van de meiose in het pollen, (4) controle van het ploidiegetal in de nakomelingen. Bij *Begonia* correleert de grootte van de pollendiameter in hoge mate met de DNA-inhoud. Er is een methode ontwikkeld om via flow cytometrie een screening te doen van het pollen gebaseerd op de DNA-inhoud. Nucleair DNA kan zowel osmotisch als mechanisch uit het pollen vrijgesteld worden, waarna het door filtratie kan gescheiden worden. Zowel de vegetatieve als de generatieve kern kunnen met DAPI gevisualiseerd worden en op die manier een ondubbelzinnig bewijs geven van
de aanwezigheid van 2n pollen in een aantal Begonia-genotypes. Ook de analyse van de pollen-meiose bevestigde de vorming van 2n pollen bij deze Begonia-genotypes.

Pollen van Hibiscus: er is een grote variatie in pollendiameter, waarbij het groot pollen ongereduceerd pollen kan zijn

Inductie

Bepaalde omgevingsfactoren of chemicaliën, zoals koude, warmte, chemicaliën en lachgas, kunnen de inductie van ongereduceerde gameten stimuleren,. Onderzoek bij Begonia wijst uit dat koude- en warmtebehandelingen een beperkte invloed op de productie van ongereduceerde gameten hebben. Behandeling van bloemen met chemicaliën, zoals trifluraline, heeft wel een stimulerend effect op de vorming van 2n gameten. Verder kan N₂O begassing (figuur) de produktie van ongereduceerde gameten te verhogen.

Gebruik

In sommige gevallen zijn 2n gameten de enige leefbare gameten die gevormd worden. Zo is er een ‘natuurlijke’ selectie naar een verhoogd ploïdiegetal in de volgende generatie. In andere gevallen vormen planten zowel normaal als ongereduceerd pollen.

Contactpersonen: Katrijn Van Laere, Tom Eeckhaut en Leen Leus
2.4. IS MEER BETER? POLYPLOÏDEN EN STRESSRESSISTENTIE

Ploidieverdeling wordt aangewend om meer variatie te creëren in bestaande soorten. Uit onderzoek bij *Spathiphyllum* blijkt dat polyploïden niet alleen morfologische veranderingen kunnen teweeg brengen bij planten, maar dat polyploïden ook een fysiologische meerwaarde kunnen hebben. Zo zijn tetraploïde *Spathiphyllum*-genotypes veel beter bestand tegen droogtestress dan de diploïde genotypes.

Binnen de sierteelt is de vraag naar nieuwigheden met een duidelijke esthetische, fysiologische (betere houdbaarheid, verhoogde stresstolerantie) en teelttechnische meerwaarde enorm groot. Ploidieverdeling wordt aangewend om meer variatie te creëren in bestaande soorten. Over morfologische veranderingen van polyploïde planten zijn heel wat gegevens beschikbaar. ‘Typische’ eigenschappen van polyploïden hebben een tuinbouwkundige meerwaarde, bvb. grotere bloemen, verschoven bloeitijd, dikkere bladeren en stengels, gewijzigde groeikracht. Over de fysiologische en teelttechnische meerwaarde (betere houdbaarheid, groeikracht, effect op waterbalans ed.) van chromosoomverdubbeling bij sierplanten is de kennis echter zeer beperkt. Er wordt vermoed dat bepaalde morfologische wijzigingen, die optreden bij planten met meerdere chromosoomsets, een impact kunnen hebben op houdbaarheid en stresstolerantie.

Een breder onderzoek naar de relatie tussen kwaliteit, houdbaarheid en stresstolerantie enerzijds en ploidieniveau anderzijds kan een belangrijke bijdrage leveren aan vernieuwde inzichten in veredelingsdoeleinden en veredelingsstrategieën. Om hieraan tegemoet te komen werd in oktober 2005 een IWT project aangevat om de potentiële meerwaarde van polyploïden voor houdbaarheid, waterbalans en stresstolerantie na te gaan. De modelplant voor dit onderzoeksthema was *Spathiphyllum walissii*.

Diploïde genotypes van *Spathiphyllum* werden via mitoseinhibitoren polyploïd (tetraploïd) gemaakt. De tetraploïde planten verschillen duidelijk in morfologie vergeleken met de diploïde planten. Tetraploïden hebben minder en grotere huidmondjes (=stomata). Ook hebben de tetraploïden rondere bladeren en bloemen. De tetraploïde *Spathiphyllum*-genotypes hebben minder scheuten en minder bladeren dan de diploïde genotypes.

Ook fysiologisch verschillen de diploïden en de tetraploïden. Er werd een experiment opgezet waarbij diploïde en tetraploïde *Spathiphyllum*-genotypes onderworpen werden aan droogtestress. Na 15 dagen droogtestress zijn de bladeren van de diploïde planten al erg verwelkt, terwijl de meeste tetraploïde planten nog geen symptomen vertonen van droogtestress (figuur).
De effecten van de droogtestress op de diploïde en tetraploïde planten werden niet alleen morfologisch beschreven, ook werden een aantal parameters, zoals stomatale weerstand, relatieve waterinhoud van de bladeren (RWC) en bladpotentiaal, opgemeten. Deze metingen tonen aan dat polyploïde planten beter hun waterbalans kunnen behouden bij toenemende droogtestress. Tevens tonen de biochemische bepalingen (prolinegehalte en concentratie aan reactieve zuurstof (ROS)) aan dat het defensiemechanisme tegen droogtestress bij polyploïde planten nog niet is opgeregeld, terwijl bij diploïde planten reeds significant hogere concentraties proline aanwezig zijn. De microscopische analyse wijst eveneens op een hogere concentratie van ROS bij diploïde planten onder droogtestress in vergelijking met tetraploïde afgeleiden.

De resultaten uit dit project zijn veelbelovend. Daarom zal in de toekomst het effect van polyploïdisatie op het verdedigingsmechanisme t.o.v. biotische (ziekte) en abiotische (droogte) stress bij andere gewassen verder onderzocht worden.

Contactpersoon: Katrijn Van Laere
2.5. CYTOGENETISCHE TECHNIEKEN ALS ONDERSTEUNING BIJ VEREDELING VAN SIERPLANTEN

Cytogenetische technieken, zoals ploïdiebepalingen, genoomgroottebepalingen en in situ hybridisatie (FISH, GISH) worden frequent toegepast in verdelingsprogramma’s bij sierteeltgewassen. Deze technieken kunnen nuttige informatie opleveren voor het opstellen van gerichte kruisingscombinaties en kunnen de screening van hybride nakomelingen versnellen.

Eind vorige eeuw werd biotechnologie geïntroduceerd in de plantenveredeling. Sindsdien worden enerzijds moleculaire merktechnieken (o.a. AFLP, microsatellieten) gebruikt die gebruik maken van de DNA-sequentie. Via deze technieken kan de genetische variatie van ouderplanten geëvalueerd worden en kan de selectie van planten sneller gebeuren. Daarnaast werden cytogenetische technieken ontwikkeld, waarbij niet het DNA op zich geanalyseerd wordt maar wel de chromosomen (de structuren die vorm geven aan het DNA in plantencellen). Cytogenetica bestudeert wat met deze chromosomen en chromosoomstructuren gebeurt doorheen het kruisingsproces.

Aan het ILVO-Eenheid Plant-Toegepaste Genetica en Veredeling worden een aantal cytogenetische technieken frequent gebruikt in de veredelingsprogramma’s binnen de sierteelt: flowcytometrie (ploïdiebepalingen, genoomgroottebepalingen) en In Situ Hybridisation (FISH en GISH).

1. Ploïdiebepalingen

De klassieke methode om het ploïdiegetal te bepalen is het tellen van chromosomen in cellen van de worteltip (figuur). Chromosomen kunnen gevisualiseerd en geteld worden tijdens de metafase (= fase tijdens de celdeling). Deze methode is arbeidsintensief en niet voor elke plant eenvoudig uit te voeren.

Sinds begin de jaren ’90 voert het ILVO ploïdieanalyses uit met behulp van een flowcytometer (figuur). Deze techniek laat toe op een snelle manier de hoeveelheid DNA in de cel te meten. Deze DNA-hoeveelheid staat in verhouding met het ploïdiegetal. Plantmateriaal wordt voorbereid door celkernen vrij te stellen en deze te kleuren met een fluorescente kleurstof. Voor ploïdiebepalingen worden de celkernen meestal gekleurd met DAPI. Het toestel geeft het resultaat van de analyse weer als een histogram waarbij het aantal celkernen met een bepaalde fluorescentie wordt weergegeven. De metingen zijn relatief, dit wil zeggen dat het toestel eerst wordt ingesteld met een referentie met gekend ploïdiegetal.
Ploïdiebepalingen worden in de verdeling voor diverse doeleinden uitgevoerd:

2. Voor gerichte polyploïdisatie is het noodzakelijk ploïdieanalyses uit te voeren om de chromosoomverdubbelde planten te selecteren en polyploïden teonderscheiden van niet verdubbelde planten, mixoploïden en ploïdiechimeren.

Preparaat uit een worteltip toont chromosomen in metafase (links); flowcytometer met een histogram als resultaat van een ploïdiebepaling op het scherm

2. **Genoomgroottebepalingen**

Via flowcytometrie kan ook de genoomgrootte van de celkernen bepaald worden. Voor het meten van de genoomgrootte worden de celkernen gekleurd met propidiumiodide. Wanneer de analyses worden uitgevoerd tegenover referentie planten met gekende genoomgrootte, kan de genoomgrootte van de te analyseren planten worden berekend in baseparen of picogram.

Genoomgroottes zijn meestal gelijk binnen een soort, maar tussen verschillende soorten kan variatie optreden. Soms hebben verschillende soorten met een gelijk aantal chromosomen een andere genoomgrootte doordat er de individuele chromosomen verschillen in grootte. Verschillen in genoomgroottes van de ouderplanten kunnen consequenties hebben voor de kruisings-compatibiliteit. Ook kan, bij kruisingen tussen verschillende soorten met een verschillende genoom-grootte, het meten van de genoomgrootte van de nakomelingen vaak een indicatie geven van het hybride karakter.
van deze nakomelingen. Vaak zijn de genoomgroottes van de nakomelingen intermediair vergeleken met deze van de ouderplanten. Een voorbeeld hiervan is de kruising tussen Buddleja weyeriana x B. davidii ‘Royal Red’. De ouders zijn alle twee tetraploïd (76 chromosomen) maar hebben een verschillende genoomgroottes van respectievelijk 1.78 en 1.46 pg/1C. De nakomelingen hebben een intermediaire genoomgrootte van 1.55 pg/1C, wat een bewijs is van hun hybride karakter.

3. In situ hybridisation

De Fluorescence In Situ Hybridisation techniek (FISH) werd een 30-tal jaar geleden ontwikkeld als een methode om specifieke DNA sequenties te detecteren in het genoom van cellen (plant, dier, mens). DNA is een macromolecule die bestaat uit sequenties van 4 verschillende nucleotide basen (adenine, guanine, cytosine en thymidine). ‘In Situ Hybridisation’ steunt op het feit dat elke nucleotide base bindt met zijn complementaire nucleotide base. Zo bindt adenine met thymidine en guanine met cytosine. Er kan een sequentie van nucleotiden gemaakt worden die complementair is aan de te detecteren sequentie (= target) die in het genoom (totale DNA sequentie) van de cel voorkomt. Deze zelf gemaakte complementaire sequentie (= een probe) zal tijdens de hybridisatiereactie binden aan de target DNA sequentie. De probe wordt steeds gemerkt met een fluorescent label, zodat de plaats waar de hybridisatie plaatsvond achteraf kan gevisualiseerd worden op een chromosoompreparaat.

De detectie van de hybridisatieplaatsen gebeurd met een fluorescentie microscoop. De term ‘In Situ’ slaat op het feit dat de reactie gebeurt op de originele weefsels, cellen of geïsoleerde chromosomen (niet in een test tube) om zo de exacte plaats te kennen van de te detecteren DNA sequentie in het genoom. De hybridisatiereactie kan doorgaan als het genoom zich bevindt in de interfase of metafase van de celdeling (mitose of meiose).

Eén van de eerste cytogenetische toepassingen is de analyse van metafase chromosomen, karyotyping genaamd. Karyotypes (= chromosoomprofielen) tonen de morfologie van de chromosomen geordend van groot naar klein. Via FISH kunnen daarenboven zeer specifieke sequenties (bvb. bepaalde genen of de 45S rDNA regio = plaats in het genoom waar de ribosomen aangemaakt worden) op de chromosomen gelocaliseerd en gevisualiseerd worden. De gedetecteerde hybridisatieplaatsen kunnen beschouwd worden als cytogenetische chromosoommerkers. Wanneer verschillende soorten veel verschillen vertonen in hun karyotype, kan men veronderstellen dat een kruising tussen deze soorten niet zo goed zal lukken. De cytogenetische merkers kunnen gebruikt worden om ‘het gedrag’ van de ouderchromosomen te analyseren in de hybride nakomelingen.

Bijvoorbeeld, om gerichtere kruisingscombinaties op te stellen bij interspecifieke kruisingen tussen Hydrangea macrophylla, Hydrangea paniculata (figuur) en Hydrangea quercifolia, werden deze 3 oudersoorten eerst gekarakteriseerd o.a. door hun karyotype (schematisch voorstelling van de verschillende chromomen gerangschikt volgens lengte) op te stellen. De karyotypes van de 3 oudersoorten verschillen in lengte van de
chromosomen, morfologie van de chromosomen en in aantal plaatsen op de chromosomen waar de ribosomen aangemaakt worden (geanalyseerd via FISH met een geconserveerde 45S rDNA sequentie als probe). Deze informatie (samen met de resultaten van een AFLP analyse) geeft een duidelijke indicatie dat soortkruisingen met deze 3 soorten moeilijk zullen verlopen en dat (in vitro) technieken zullen moeten aangewend worden om de voorkomende kruisingsbarrières te omzeilen.

Een met FISH verwante techniek is Genomic in situ hybridisation (GISH). GISH is een techniek die in staat stelt de verschillende oudergenomen te onderscheiden in een interspecifieke hybride, resulterend uit kruisingen tussen verschillende soorten. Hierbij kan worden gevisualiseerd of er introgressie plaatsvindt van DNA van de vaderplant en er dus recombinatie plaatsvindt. Door deze recombinatie wordt een grotere variatie in de nakomelingen verkregen.

Voor het uitvoeren van de GISH techniek wordt Genomisch DNA van beide ouderplanten geëxtraheerd en met een verschillend fluorescent label (verschillende kleur) gemerkt. Deze worden allebei gebruikt in een hybridisatie reactie. Het target DNA is in dit geval de volledige chromosoomset van de interspecifieke hybriden, gefixeerd op een microscopisch glaasje. Na visualisatie van de hybridisatie reactie m.b.v. de fluorescentie microscoop, kunnen dus de verschillende oudergenomen in interspecifieke hybriden onderscheiden worden en kan onderzocht worden in hoeverre er recombinatie optreedt tussen de verschillende oudergenomen.

Aan ILVO-Eenheid Plant-Toegepaste Genetica en Verdeling worden o.a. soortkruisingen uitgevoerd tussen Hibiscus syriacus (80 chromosomen) en Hibiscus paramutabilis (82 chromosomen). Om een bevestiging te hebben van het hybride karakter van de F1 en F2 (door zelfbestuiving van F1) nakomelingen en om te kijken of er recombinatie is tussen de 2 oudergenomen in de F2 nakomelingen, werd GISH uitgevoerd waarbij het genomisch DNA van Hibiscus syriacus als probe werd gebruikt (figuur). In de F1 planten werden 81 chromosomen waargenomen waarvan 40 afkomstig van Hibiscus syriacus (rode...
chromosomen in de figuur) en 41 afkomstig van *Hibiscus paramutabilis*. In de F2 planten werden 120 chromosomen aangetroffen (F1 planten produceren ongereduceerde gameten) en was er duidelijk recombinatie tussen de chromosomen van *Hibiscus syriacus* (groene chromosomen in de figuur) en *Hibiscus paramutabilis*.

GISH bij F1 (boven) en F2 (onder) hybriden van Hibiscus syriacus x Hibiscus paramutabilis.

Contactpersonen: Katrijn Van Laere, Leen Leus
Oog hebben voor schoonheid... Wellicht zo oud als de mens zelf en zeker ook de basis van wat we nu de sierteelt noemen. Ook nu nog willen mensen speciale of mooie bloemen en planten die ze in het wild vinden, telen en vermeerderen. Na telen en vermeerderen van sierplanten komt al snel de stap naar echt domesticeren of “veredelen”: elite planten met elkaar proberen kruisen en zo de combinatie van positieve kenmerken nastreven bij de zaailingen. Het onderzoek naar erfelijke eigenschappen en hoe die zich overdragen naar nakomelingen noemt men de genetica. Mendel (1865) introduceerde het concept van een elementair overerfbaar deeltje dat de informatie voor een bepaalde eigenschap bezit; dit is men later een “gen” gaan noemen. De ontdekking van de dubbele helix-structuur van DNA door James D. Watson en Francis Crick in 1953 leidde de opkomst in van de moleculaire genetica. Onderwerp van onderzoek is het (moleculaire) mechanisme van expressie van genen. Naast overerfbaarheid wordt ook bestudeerd waarom genen in verschillende delen van de plant of onder andere omstandigheden, gewijzigd tot uiting komen. Het proces van expressie van genen verloopt via transcriptie (uitlezen van DNA naar RNA) en translatie (het vertalen van de RNA moleculen in aminozuren) naar de productie van eiwitten. Bijzondere eiwitten, enzymen genaamd, zijn de biochemische katalysatoren in een cel, die uiteindelijk instaan voor het tot uiting komen van elke eigenschap.

Hiermee is ook afgezien wat we met moleculair genetisch onderzoek aan sierplanten proberen te bereiken. We willen het genetisch mechanisme dat aan de basis ligt van interessante eigenschappen ophelderen. Dit betreft zowel de sierwaarde van de planten zoals bloemvorm, kleur, bloei of plantvorm als kenmerken die van belang zijn bij de teelt zoals resistentie tegen ziekten en plagen of stress condities. Die kennis proberen we dan ook toe te passen in de veredeling om zo op een gerichte manier een combinatie van gunstige eigenschappen te verkrijgen in nieuwe selecties. Tenslotte kunnen we ook soorten en cultivars beschrijven en karakteriseren met het oog op genetische identificatie van plantenmateriaal, wat van belang kan zijn voor fraudebestrijding bij kweekersrechtelijk beschermde rassen.

We beschikken hiervoor op ILVO, Eenheid Plant (Toegepaste Genetica en Veredeling) over een waaier aan moleculaire technieken:
De unieke volgorde van de nucleotiden in een DNA sequentie kan bepaald worden. Een DNA-moleculaire bestaat uit twee lange strengen van nucleotiden, die samen zich buigen tot een dubbele helix. De twee strengen zijn aan elkaar verbonden door zogenaamde baseparen. Een basepaar verbindt twee tegenover elkaar liggende nucleotiden. De volgorde van nucleotiden in een streng wordt een sequentie genoemd. Omdat er zeer veel sequenties mogelijk zijn, kan de volgorde van nucleotiden unieke erfelijke informatie verschaffen. Deze erfelijke informatie wordt vooral gebruikt om genen te identificeren die coderen voor interessant eigenschappen. In azalea beschikken we zo over de sequentiegegevens van alle genen die samenwerken om de bloemkleurpigmenten te produceren.

Moleculaire merkers is een verzamelnaam voor technieken die er op gericht zijn variaties in een DNA molecule zichtbaar te maken. Zulke variaties noemt men DNA polymorfismen. Zij worden bepaald door wijzigingen in de DNA sequentie over een beperkt aantal basen binnen dezelfde regio op het genoom. Voorbeelden van merker technieken zijn o.a. AFLP, microsatellieten of EST merkers.

De cytogenetica is het onderdeel van de genetica dat zich bezighoudt met de structuur en functie van cellen, meer in het bijzonder met de lokalisatie van chromosomen, de erfelijke eigenschappen in de celkern en de overdracht van erfelijk materiaal. Op deze manier kan bijvoorbeeld een verandering in het aantal chromosomen worden vastgesteld. Veelgebruikte technieken in de cytogenetica zijn fluorescentie in situ hybridisatie (FISH) en vergelijkende genomische hybridisatie (GISH)....

Door middel van genexpressie bestuderen we waarom bijvoorbeeld in weefsels die over dezelfde genetische informatie beschikken (bv. blad en bloem van eenzelfde plant) toch andere genen tot expressie komen. De studie van de expressie van genen gebeurt niet op DNA, maar op RNA. Dit is een stukje van het DNA dat gekopieerd wordt naar een soort kladbriefje, dat nadien gebruikt wordt om eiwitten te vormen. RNA komt pas tot expressie naarmate die eiwitten nodig zijn voor het functioneren van een plantenweefsel op een tijdstip in de ontwikkeling.

Meer details over de specifieke onderzoeksprojecten kan je vinden onder:
- Het in kaart brengen van resistentie tegen meeldauw in roos (Leen Leus)
- Genetische studie van bloemkleur en plantkwaliteitskenmerken in azalea (Ellen De Keyser)
- Identificatie van rassen, erkenning en fraudebestrijding (Jan De Riek)
- Bloeiregulatie en -kwaliteit bij azalea: interactie tussen genetisch, fysiologische en teeltgebonden factoren (Ellen De Keyser)

Contactpersoon: Jan De Riek
2.7. HET IN KAART BRENGEN VAN RESISTENTIE TEGEN MEELDAUW IN ROOS

Door het koppelen van moleculaire merkers aan het al dan niet voorkomen van meeldauwresistentie bij roos is een genetische kaart opgemaakt waarop de zones van het DNA die betrokken zijn bij resistentie afgebakend wordt.

Door de zorg voor een duurzame teeltwijze en het toenemend milieubewustzijn bij de consument is de vraag naar ziekteresistente rozencultivars sterk toegenomen. Resistentie tegen voornamelijk echte meeldauw en sterroetdauw is daarom vandaag het belangrijkste criterium in de rozenveredeling. Beschikken over goed gekarakteriseerde ouderplanten, eventueel gekozen uit wilde soorten, is van primordiaal belang. Ook willen we de gezondste nakomelingen snel kunnen selecteren. Hiervoor ontwikkelen we gestandaardiseerde testen of biotoetsen. Hierdoor kunnen we tijdens verschillende fases van het veredelingsproces screenen op ziekteresistentie. De planten die resistentie vertonen tegen één van de ziekten vermeerderen we en volgen we gedurende enkele jaren onder veldcondities en natuurlijke infectiedruk. Uiteindelijk gaan de genotypen die ook op het veld goed scoren nogmaals getest worden onder labo omstandigheden met de meest virulente pathotypes van echte meeldauw en sterroetdauw. Uiteindelijk zullen rozen geselecteerd zijn met een verbeterde resistentie. Daarnaast dienen uiteraard de andere kenmerken van bloei en ontwikkeling niet verwaarloosd te worden.

Een verdere stap bestaat er in dat we in plaats van telkens opnieuw planten te moeten infecteren en evalueren, op zoek gaan naar de onderliggende resistentie genen. Als we er in slagen die goed te karakteriseren, kunnen we rechtstreeks die informatie toepassen in de selectie. Daartoe is in een uitsplitsende populatie, dit is een familie van nakomelingen waarin alle verschillende gradaties van resistentie voorkomen, een genetische kaart opgemaakt waarop de zones van het DNA die betrokken zijn bij resistentie afgebakend worden. Dit gebeurt door de koppeling te onderzoeken tussen moleculaire merkers en het al dan niet voorkomen van een kenmerk. Typisch voor complexe kenmerken zoals resistentie tegen meeldauw in roos, is dat meerdere genen samen bepalen of een plant al
dan niet vatbaar zal zijn voor ziekte. Doordat meerdere afzonderlijke genen een rol spelen is het niet op voorhand duidelijk te voorspellen hoe de uitkomst van een kruising zal zijn. Selectie kan dan meer efficiënt gebeuren door het inschakelen van moleculaire merkers gekoppeld met de onderliggende genen. Bijgevolg kan het invoeren van merker ondersteunde selectie in een veredelingsproces toelaten een opsplitsing van een kwantitatief kenmerk door te voeren naar zijn enkelvoudige bepalende factoren die afzonderlijk wel met een hoge graad van heritabiliteit overerven.

Contactpersoon: Leen Leus
2.8. Genetische studie van bloemkleur en plantkwaliteitskenmerken in azalea

Via moleculaire technieken ontrafelen we de genetische achtergrond van bloemontwikkeling, bloemkleur en andere plantgebonden kenmerken bij azalea.

Dit onderzoek focust op de overerfbaarheid van bloemkleur en plantkwaliteitskenmerken zoals groeikracht, compactheid, bladvorm, bladkleur, vroegrijpheid, ... om bij nieuwe kruisingen een meer gerichte en dus efficiëntere selectie te kunnen doorvoeren met het oog op het behouden en/of verbeteren van de huidige teelttstandaard. Hiervoor zijn in het verleden drie kruisingspopulaties opgebouwd met ouders die zeer verschillend scoren voor de diverse kenmerken en één kruisingspopulatie specifiek om de uitsplitsing van bloemkleur te bestuderen. Aangezien bloemkleur een kenmerk is dat al vrij goed gekarakтерiseerd is in azalea, hebben we dit gekozen als model voor het uitwerken van de technologie. Alle planten zijn individueel gescoord voor zoveel mogelijk kenmerken. De planten zijn geteeld onder groeiremmers om ze onder natuurlijke omstandigheden te kunnen evalueren. Uit bladmateriaal van de nakomelingen van deze kruisingen is ook DNA geïsoleerd voor de constructie van een genetische kaart van azalea.

Op basis van verschillende soorten moleculaire merkers (AFLP, SSR, EST, Myb-profiling) zijn genetische kaarten gemaakt voor de vier populaties. Een genetische kaart is een grafische weergave van de organisatie van het DNA in de verschillende chromosomen van azalea en is een sterke hulp voor het aflijnen van de gebieden die coderen voor een complexe eigenschap. Gemeenschappelijke merkers zijn gebruikt als basis voor de individuele kaarten, dit maakt het mogelijk om informatie gevonden in de ene populatie (kaart) te linken met de andere populaties. Wie meer wil lezen over onze kaarten, kan dit in De Keyser et al. (2010).

De voorbije jaren werden ook een aantal vertakkingsparameters, bladeigenschappen (vorm en kleur) en data over het bloeitijdstip verzameld in de kruisingspopulaties. Bloemkleur erf over als een kwalitatief kenmerk en kan dan ook eenvoudig in kaart gebracht worden door de planten op te splitsen in drie groepen (karmijnrood, rood en wit) en hier een 2-lettercode (W&Q) voor kleurgenen aan te geven. Roze wordt echter niet verklaard door dit systeem. Daarom werd in één populatie met behulp van beeldanalyse de bloemkleur gemeten.

Met bloemkleur als modelsysteem is, hebben we dan ook in eerste instantie deze beeldanalyse data in kaart gebracht door middel van QTL (Quantitative Trait Loci) mapping. Dit staat voor een aantal statistische technieken die moeten gebruikt worden om aan te tonen dat verschillende genen samenwerken en zo een significant effect hebben op het fenotype. QTLs identificeren een specifieke regio op het genoom dat codeert voor een gen (genen) dat geassocieerd is met het gemeten kenmerk. Ze worden
weergegeven als intervallen op een chromosoom en voor elke merker op de kaart is de koppeling met het kenmerk weergegeven.

Voor bloemkleur zijn twee grote QTL’s teruggevonden die overeenkomen met de positie van de kleurgenen W en Q. W is gekoppeld met het onderscheid tussen rood en wit, Q differentieert tussen karmijnrood en rood. Een aantal kleinere QTL’s zouden van betekenis kunnen zijn voor roze, maar vermits deze niet samenvallen met gekende bloemkleurgenen, kunnen we hier nog geen conclusies uit trekken.

We hebben ook nog een derde niveau toegevoegd aan onze kaart. Door middel van genexpressie-analyses willen we op zoek gaan naar de schakelaars die de genen voor de productie van de bloemkleurpigmenten sturen. De expressiegegevens zijn ook als QTL in kaart gebracht en we zien dat voor sommige genen de sturing rechtstreeks op het gen zelf zit, voor andere gebeurt dit van op een afstand. Dit complex kluwen van gegevens moet nu verder ontrafeld worden om te zien hoe alle genen samenwerken in azalea om het specifieke kleurenpalet te vormen.

In de toekomst zullen ook de andere parameters als QTL in kaart gebracht worden. Voor deze eigenschappen moet nog op zoek gegaan worden naar kandidaat-genen die het proces van vertakking, bladkleur, bladvorm, ... beïnvloeden. Deze zullen dan, net als de bloemkleurgenen, in kaart gebracht worden.

Contactpersoon: Ellen De Keyser
2.9. IDENTIFICATIE VAN RASSEN, ERKENNING EN FRAUDEBESTRIJDING

Vergelijking van DNA fingerprints maakt het mogelijk de globale genetische identiteit en afstamming van een plant te bepalen. Dit kan binnen de sierteelt voor diverse praktische toepassingen gebruikt worden.

Herkenning van rassen of cultivars gebeurt in de praktijk meestal aan de hand van een gedetailleerde beschrijving van hoe een plant eruit ziet. Een beschrijving aan de hand van moleculaire merkers kan een bijkomende invalshoek bieden omdat zij directe informatie verschaffen over de DNA-structuur. De totale set van DNA merkers van één plant vormt immers een unieke DNA fingerprint. Vergelijking van DNA fingerprints maakt het mogelijk de globale genetische identiteit en afstamming van een plant te bepalen.

Voor het verkrijgen van kwekersrecht baseert men zich op de criteria voor onderscheidbaarheid uit de UPOV richtlijnen (International Union for the Protection of new Varieties of Plants). Het onderscheidbaar zijn binnen het bestaande assortiment vormt naast homogeniteit en bestendigheid van de aangeboden cultivar een basiscriterium voor de erkenning van een nieuwe cultivar (OHB onderzoek).

Bij commerciële productie van beschermde cultivars is betaling van kwekersrecht vereist. DNA merkers kunnen identificatie van een ras in alle productiestadia en bij marketing toelaten en bewijsmateriaal leveren. Ook naar de gebruiker toe biedt identificatie met moleculaire merkers bescherming. Het feit alleen al dat de gebruiker beschikt over een snelle methode voor identificatie kan volstaan om eventuele misbruiken te voorkomen. Bij fraudebestrijding kan het volstaan te beschikken over een techniek die toelaat het verschil te testen t.o.v. een wel gedefinieerde en aanwezige standaard, nl. het geregistreerde ras. Bij betwisting is het aan de rechtbank te beslissen of het aangevoerde bewijsmateriaal voldoende is om het verschil aan te tonen tussen de verdachte variëteit en de geregistreerde.

Daarnaast kan het gebruik van moleculaire merkers geëvalueerd worden voor het opsporen van genetische gelijkenis tussen nauw verwante cultivars bij discussies over "wezenlijk afgeleide rassen" (Essentially Derived Variety of EDV). Bij vegetatief vermeerderde gewassen zoals de meeste siergewassen kan een wezenlijk afgeleid ras b.v. een sport of een mutant zijn. Daarnaast kan het concept EDV ook van toepassing zijn op genetisch gemodificeerde cultivars. In het geval van wezenlijk afgeleide rassen kan volgens de UPOV conventie van 1991 de kweker van het initiële ras de commercialisering van het afgeleide ras verbieden of aanspraak maken op een deel van de royalty’s van het nieuwe ras. Deze wetgeving is geïmplementeerd in het Europees kwekersrecht, het Belgische kwekersrecht is nog gebaseerd op een oudere conventie en kent het concept EDV niet.
Voor de sierteeltsector stellen wij al jaren onze expertise i.v.m. fraudebestrijding en opsporen van ‘Essentially Derived Varieties’ of EDV ter beschikking van de sector. Met ons engagement in CIOPORA (de internationale kwekersvereniging voor vegetatief vermeerderde siergewassen en fruit) werken wij ook buiten de grenzen actief mee aan het uitbouwen van regelgeving voor intellectuele eigendom in plantenrassen.

Contactpersoon: Jan De Riek
2.10. Bloeiregulatie en -kwaliteit bij azalea: interactie tussen genetisch, fysiologische en teeltgebonden factoren

Een goede bloeikwaliteit is een belangrijk kwaliteitsaspect bij azalea. Dit houdt in dat alle bloemknoppen zeer homogeen ontwikkelen en zo gelijktijdig mogelijk bloeien. De laatste jaren werden hier dikwijls problemen rond vastgesteld. PCS, ILVO en UGent voeren daarom samen een uitgebreide studie over de bloeiregulatie en de bloeifysiologie.

1. Probleemstelling

Een goede bloeikwaliteit is een belangrijk kwaliteitsaspect bij azalea. Dit houdt in dat alle bloemknoppen zeer homogeen ontwikkelen en zo gelijktijdig mogelijk bloeien. De laatste jaren werden hier dikwijls problemen rond vastgesteld, de meeste problemen situeren zich bij de bloei voor kerstmis. Deze problemen zijn vermoedelijk gerelateerd aan de gewijzigde teeltomstandigheden van de voorbije jaren.

- **Jaarrondteelt:** de teelt vindt plaats onder gewijzigde temperatuur, daglengte en lichtintensiteit.
- **Teeltduurverkorting** werd mogelijk door meer stekken/pot te bewortelen. Hierdoor worden jongere planten met **minder topbeurten** in bloei gebracht.
- **Hogere frequentie** van behandelingen met plantengroeiregulatoren (PGR). Men gaat deze PGR ook steeds **later in de teelt** (zelfs tot aan de koeling) inzetten.
- **Er worden PGR ingezet met een sterkere werking/persistentie**, zoals paclobutrazol en alternatieven.
- Het in bloei trekken van azalea’s gebeurde vroeger hoofdzakelijk onder invloed van verhoogde temperaturen, nu wordt er meer en meer ook **assimilatiebelichting in de forcerie** toegepast.

Dit IWT-Landbouw project is van start gegaan op 1 september 2008. Voor een periode van 4 jaar zullen het PCS, ILVO en UGent samen een uitgebreide studie voeren over de bloeiregulatie en de bloeifysiologie van azalea. In de bloemontwikkeling worden vier fasen onderscheiden: de knopaanleg (initiatie), de bloem-ontwikkeling (differentiatie), de knoprust (dormantie) en het openen van de bloem (anthese). Deze vier fasen worden door verschillende factoren beïnvloed. Tijdens dit onderzoek wordt het effect van een aantal van deze factoren onderzocht zowel op genetisch als op fysiologisch vlak. Op ILVO, Eenheid Plant (Toegepaste Genetica en Veredeling) zijn we verantwoordelijk voor het genetisch aspect van dit project.

2. Doelstellingen

De hoofddoelstelling van het project is de bepalende factoren betrokken bij de complexe problematiek van bloeikwaliteit in azalea in een geïntegreerde onderzoeksaanpak beter te
identificeren. Dit vereist een grondige kadering van het onderzoek in de teeltpraktijk en moet gespiegeld worden aan de resultaten van het beschikbare teeltechnische en meer fundamentele onderzoek. De geïntegreerde onderzoeksdoelstelling richt in functie van de fase van de teelt, de aandacht naar de inductie van processen op DNA niveau (genexpressie) en naar fysiologische en/of teeltechnische aspecten van de problematiek.

De voornaamste wetenschappelijke doelstelling is om op basis van gekende genen voor signaaltransductie bij bloeiregulatie voor een aantal van de daarvoor bij modelgewassen beschreven “schakelaars” en “integratoren” de homologe gensequenties uit azalea te isoleren en om te vormen naar bruikbare expressiemerkers voor de “monitoring” van het bloeiproces. Daarnaast bevat de “toolbox” ook relevante fysiologische, biochemische en morfogenetische parameters. Men is het er over eens dat voornamelijk de bloei-inductie en transitie van het vegetatieve naar het generatieve stadium van de plant en het gebruik van groeiregulatoren hierbij, moet interfereren met de koudebehoefte, het braken van bloemknop dormantie, het openbloeien in forcerie en uitbloeien in de huiskamer. Het zijn juist deze 3 teeltfases (transitie, dormantie en anhese) die het onderwerp zijn van een aantal specifieke proefopzetten, gebaseerd op de teelthandelingen zoals ze in de praktijksituatie worden toegepast. In een latere fase van het project worden de verworven kennis en de uitgewerkte methoden getoetst aan de praktijk door deze te toepassen t.o.v. probleempartijen in de bloeiproeven van het PAK.

We beogen een aantal concrete technologische doelstellingen te bereiken:

- Up-to-date kennis over bloeiregulatie en factoren die bloeiqwaliteit beïnvloeden;
- Een “toolbox” met gedocumenteerde methodieken voor directe “monitoring” van het effect van specifieke behandelingen gedurende de teelt; deze kunnen ook aangewend worden om bij probleempartijen een diagnose te maken van de teeltanalyse;
- Teeltadviezen allerhande, preventief of remediërend.

Op het ILVO worden een aantal methodieken uitgewerkt nodig voor de analyse van de expressie van gekende genen voor signaaltransductie bij bloeiregulatie. Hierbij worden twee alternatieve benaderingen gevolgd:

- Voor een beperkt aantal genen die goed gekarakteriseerd zijn in modelplanten zoals Arabidopsis worden de homologen in azalea opgezet op basis van PCR-primers ontwikkeld tegen geconserveerde gebieden (candidate gene approach). Op deze manier hebben we 13 relevante azalea-genen kunnen isoleren. De expressie van deze genen zal nu bestudeerd worden in een aantal oriënterende proefopzetten om te zien in welke mate de expressie beïnvloed wordt door behandelingen zoals daglengte, behandeling met plantengroeiregulatoren, ...
- Heel wat genen betrokken bij de bloeiregulatie zijn transcriptiefactoren, dit zijn de schakelaars die de expressie van andere genen aan- of uitschakelen. Meestal komen deze voor in ruime multigen-families, wat betekent dat er heel veel sterk gelijkende genen voorkomen in de plant. Om de ‘familieleden’ te vinden die een
directe rol spelen bij de bloei van azalea, gebruiken we een “profiling” techniek die PCR fragmenten genereert op basis van primers die gemaakt worden tegen de karakteristieke geconserveerde gebieden van deze multigen-familie. We passen dit toe op planten die bv. wel en niet gedurende 6 weken in de frigo bewaard zijn voor het doorbreken van de dormantie.

Contactpersoon: Ellen De Keyser
2.11. VERBETERDE ZIEKTERESISTENTIE IN SIERPLANTEN

Een verminderd gebruik van chemische bestrijdingsmiddelen is één van de pijlers van een duurzame land- en tuinbouw. Ook in de sierteelt kan de ontwikkeling van resistente rassen in belangrijke mate bijdragen tot kostenvermindering en een milieuvriendelijke en kwaliteitsvolle productie.

1. Inleiding

Een verminderd gebruik van chemische bestrijdingsmiddelen is één van de pijlers van een duurzame land- en tuinbouw. Ook in de sierteelt kan de ontwikkeling van resistente rassen in belangrijke mate bijdragen tot kostenvermindering en een milieuvriendelijke en kwaliteitsvolle productie.

De ontwikkeling van resistentere planten via kruisingsveredeling maakt hiervoor gebruik van de bestaande natuurlijke variatie in de te veredelen gewassen. De meest resistentete genotypes worden gebruikt in kruisingsprogramma's. Uit de nakomelingen worden de meest resistentete geselecteerd. Voor een efficiënte keuze van ouderplanten en correcte selectie van nakomelingen is nood aan betrouwbare methodes voor het bepalen van plantresistenties. Soms worden natuurlijke aantastingen gebruikt, deze zijn echter sterk onderhevig aan de klimaatsomstandigheden en de aanwezigheid van voldoende inoculum op de testsite. We spreken van een biotoets wanneer we proberen onder gecontroleerde omstandigheden de resistentie van de plant tegenover pathogenen te testen. Hiervoor moet de juiste techniek worden ontwikkeld en is kennis over de pathogeen onontbeerlijk. Het ILVO ontwikkelde een biotoets voor enkele sierteelt pathogenen. Ook verder onderzoek, zoals de ontwikkeling van merkers (link naar: artikel merkers) of het testen van gewasbeschermingsmiddelen in samenwerking met het Proefcentrum voor Sierteelt (PCS - Destelbergen) steunt op de informatie verkregen uit biotoetsen.

2. Veredeling naar resistentere azalea

Tijdens de selectie van nieuwe azalea cultivars wordt de resistentie getest tegenover twee belangrijke pathogenen: *Phytophthora citricola* en *Cylindrocladium* sp. Beide pathogenen zijn belangrijk tijdens de azaleateelt en zijn erg verschillend, *Phytophthora* dringt de plant binnen via verwonding, terwijl *Cylindrocladium* een zwakte parasiet is die ook latent in de plant aanwezig kan zijn. Gebaseerd op kennis van de biologie van de pathogenen werden biotoetsen ontwikkeld en aangepast voor routinematig gebruik in het veredelingsprogramma.

De testen met *Cylindrocladium* gebeuren door het aangieten van een mycelium- en sporenmengsel van 4 verschillende isolaten aan de stambasis van bewortelde stekken. De *Phytophthora*-inoculatie wordt toegepast op het snijvlak van de stengels na het inknippen van de planten (verwonding). Hiervoor wordt een suspensie van zoösporen van 3 verschillende *Phytophthora*-isolaten gebruikt.
Na inoculatie worden de planten onder voor de pathogeen gunstige omstandigheden geplaatst. De ziekte-ontwikkeling wordt opgevolgd. Voor elk van de pathogenen wordt de ziektestest minimaal drie maal herhaald om een duidelijk beeld van de resistentie van de kandidaatcultivar te krijgen. Telkens worden ook cultivars waarvan de resistentie of gevoeligheid goed gekend is, opgenomen in de test. Op deze manier is vergelijking mogelijk met gekende referenties.

De resultaten van de testen tonen aan dat er een grote variatie bestaat in de vatbaarheid van nieuw ontwikkelde kandidaatrassen. Sommige hebben een goede resistentie, andere zijn meer vatbaar. De biotoetsen zijn een uitstekend hulpmiddel voor de veredelaars in de ontwikkeling van azalea’s met verbeterde ziekteresistentie.

3. Resistentie tegen schimmelziekten in roos

In de veredeling van tuinrozen aan het ILVO is resistentie tegen echte meeldauw (*Podosphaera pannosa*) en sterroetdauw (*Diplocarpon rosae*) het belangrijkste selectiecriterium. In voorafgaand onderzoek werden aan het ILVO zowel voor sterroetdauw als voor echte meeldauw verschillende pathotypes gevonden. Wanneer meerdere monospoorculturen van de schimmels differentieel reageren op een testreeks van diverse rozentypes spreekt men van verschillende pathotypes. Voor het
veredelingsonderzoek is het uiteraard het interessantst resistentie te testen met meerdere zeer virulente pathotypes. Aan het ILVO werden methodes ontwikkeld om in verschillende fasen van het veredelingsprogramma de resistentie van rozen te testen. Zo wordt voor echte meeldauw een sedimentatietoren gebruikt om rozenbladeren onder gecontroleerde omstandigheden te inoculeren. Deze toren verspreid de sporen met perslucht omdat de sporen van deze schimmel geen water verdragen. Testen werden ook ontwikkeld voor het screenen van grote aantallen zaailingpopulaties in serres. De jonge plantjes kunnen zo zeer vroeg in het selectieproces in serres worden getest op hun resistentie. Sterroetdauw komt normaal niet voor in serres maar via het spuiten van een sporensuspensie en het nat houden van de planten kan de ziekte zich toch ontwikkelen. Om meer inzicht te verwerven in de resistentie van rozen werden ook microscopische observaties uitgevoerd. Zo is toe zien hoe de resistentie in de plant tot uiting komt. Verschillende resistentiomechanismen werden bij verschillende rozentypes gevonden. In roos worden de resultaten verkregen met verschillende methodes ook toegepast voor de ontwikkeling van moleculaire resistentie merkers.

Inoculatie van rozenzaailingen in de serre met een suspensie van sterroetdauwsporen
4. Biotoetsen voor Chrysant en Buxus

Het ILVO stelde ook een biotoets op punt die toelaat chrysanten te screenen op resistentie tegen Japanse roest (*Puccunia horiana*). Deze quarantaine schimmelziekte komt vooral voor in de buitenteelt. De symptomen van deze ziekte verschijnen plots en intens, waardoor telers frequent preventieve fungiciden toepassen. De ontwikkeling van de biotoets laat chrysantenveredelaars toe gericht te kruisen en nakomelingen te selecteren. Net zoals bij de hierboven beschreven pathogenen bij roos, werden ook bij Japanse roest verschillende pathotypes geïdentificeerd. Door gebruik te maken van een mengsel van specifieke isolaten in de biotoets kunnen nakomelingen worden geselecteerd die resistent zijn tegen alle gekende varianten van de pathogeen.

Momenteel wordt ook onderzoek gevoerd naar de schimmel *Cylindrocladium buxicola*. Hierbij zal onderzocht worden of de gevoeligheid van verschillende *Buxus*-types kan worden getest met een biotoets. Eerst en vooral wordt meer achtergrond kennis over de pathogene verzameld, essentieel voor het ontwikkelen van de biotoets. Het herkennen van verschillen in gevoeligheid is ook bij *Buxus* een eerste stap in de ontwikkeling van resistentere nieuwe cultivars.

Contactpersonen: Leen Leus, Evelien Calsyn en Kurt Heungens
2.12. Kwekersrechtonderzoek bij het ILVO voor sierteeltgewassen

ILVO is door het Communaat Bureau voor Plantenrassen (CPVO - Angers, Frankrijk) erkend als “Examination Office” voor het uitvoeren van kwekersrechtonderzoek bij enkele sierteeltgewassen.

Alvorens nieuwe cultivars afkomstig van binnen- en buitenlandse kwekers kwekersrecht kunnen verkrijgen, moeten ze onderzocht worden op hun OHB-kenmerken. Een cultivar is onderscheidbaar wanneer hij zich door één of meer belangrijke waarneembare eigenschappen onderscheidt van elke andere cultivar die in de EU reeds is toegelaten of waarvoor een aanvraag is ingediend. De onderscheidbare kenmerken zijn gesteund op: morfologie, kleur, fysiologie en ziekteresistenties. Een cultivar is voldoende homogeen wanneer de planten van deze cultivar in de uitingsvorm van alle in aanmerking genomen eigenschappen met elkaar overeenstemmen of genetisch identiek zijn, rekening houdend met de vermeerderingswijze. Een kandidaat-ras dient minstens zo homogeen te zijn als de referentierassen. Een cultivar is bestendig wanneer hij na opeenvolgende vermeerderingen nog steeds voldoet aan zijn beschrijving.

De eenheid Plant – Onderzoeks domein Teelt & Omgeving van het ILVO is door het Communaat Bureau voor Plantenrassen (CPVO - Angers, Frankrijk) reeds meerdere jaren erkend als “Examination Office” voor het uitvoeren van kwekersrechtonderzoek bij knolbegonia (Begonia x tuberhybrida). Vanaf 2009 is deze erkenning ook uitgebreid tot Rhododendron (R. simsi, R. obtusum, R. indicum en soortkruisingen) en Hibiscus (H. syriacus en soortkruisingen met H. paramutabilis en H. synosyrriacus). Cultivars die een positief OHB-rapport hebben, kunnen kwekersrecht verkrijgen (bescherming van de cultivar); dit zowel nationaal als Europees.

1. Proefprotocol

Voor alle gewassen worden de proeven uitgevoerd volgens UPOV of CPVO-richtlijnen. Voor knolbegonia is dit de UPOV-richtlijn TG/107/3. Nieuwe cultivars worden gedurende minstens één jaar vergeleken met een referentiecollectie. Om het aantal planten in de referentiecollectie te beperken worden de knolbegonia opgedeeld in groepen, zoals bijvoorbeeld de kleindiemige pendula’s, grootbloemige pendula’s, etc. Alle waarnemingen gebeuren op het moment dat de planten volledig in bloei staan. Telkens worden minimaal 10 planten of 10 delen van planten bestudeerd. Kenmerken die worden waargenomen zijn o.a. planthoogte, plantbreedte, dikte van de stengel, kleur van het blad, diepte van de insnijdingen van de bladeren, kleur van de bloemen.

Een cultivar is onderscheidbaar wanneer hij op basis van één of meer kenmerken verschillend is van iedere cultivar in de referentiecollectie. Aangezien knolbegonia vegetatief vermeerderbaar is, wordt de cultivar als niet-homogeen beschouwd van zodra
er bij één plant voor één of meerdere te beoordelen kenmerken afwijkingen worden waargenomen.

2. Resultaten

Op basis van het OHB-onderzoek van 2004 tot 2009 werd voor 12 rassen van knolbegonia cultivars een positief rapport opgesteld. De cultivars met een positief OHB - rapport hebben Europees kwekersrecht gekregen.

Contactpersonen: Joke Pannecouque, Filip De Brouwer en Johan Van Waes
2.13. Cryopreservatie van de azaleagenenbank

De unieke azaleacollectie waarover ILVO beschikt maakt deel uit van het Vlaams cultureel erfgoed. Om de basiscollectie te vrijwaren tegen onverwachte verliezen wordt deze momenteel ingevroren bij -196°C.

De azalea is in de Gentse regio economisch belangrijk en maakt deel uit van het Vlaams cultureel erfgoed. Reeds op 6 februari 1918 werd de azalea voor het eerst in Gent getoond tijdens de wintervoorstelling van de Koninklijke maatschappij voor Landbouw en Kruidkunde (KMLTP). Sindsdien hebben veel generaties de faam van de azaleasector tot ver buiten de Vlaamse grenzen uitgedragen.

Via selectie en veredeling werd het sortiment voortdurend aangevuld met nieuwe en betere cultivars die langzaamaan oudere cultivars vervingen in de markt. Om de genetische diversiteit veilig te stellen is het belangrijk dat de oude azaleacultivars bewaard worden in een genenbank.

1. Genenbank

De afgelopen decennia is er op het ILVO-Eenheid Plant een unieke collectie van *Rhododendron simsii* (±350 accessies) en aanverwante *Rhododendron* species (±60 accessies) bij elkaar gebracht. Deze collectie wordt vandaag actief gebruikt voor de ontwikkeling van nieuwe azaleacultivars en in diverse onderzoeksprogramma’s. Het in vivo, in serre, in stand houden van het sortiment heeft een hoge kostprijs door personeelkosten en benodigde ruimte, daarnaast vormt het risico om planten te verliezen door menselijke fout of ziekte een reëel gevaar. Een andere manier van bewaren is cryopreservatie of vriesbewaring. Met deze techniek wordt levend materiaal ingevroren tot -196°C. Bij deze temperatuur vallen alle chemische, fysische en biologische processen stil waardoor het materiaal oneindig lang bewaard kan worden. Cryopreservatie is dan ook de uitgelezene methode voor het bewaren van de basiscollectie. De basiscollectie is dat deel van de collectie die de kern vormt van de collectie en dat langdurig moet bewaard en in stand gehouden worden. In overleg met KMLTP werd een prioritaire lijst opgemaakt van de basiscollectie waarbij rekening werd gehouden met het historisch belang en de uniekheid van de cultivar. Op die manier zijn er 66 cultivars gekozen.

2. Cryopreservatie

De algemene stappen in een cryopreservatieprotocol zijn als eerste de keuze van het uitgangsmateriaal. Dit materiaal is in vivo plantenmateriaal (meestal knoppen) of in vitro materiaal gaande van niet georganiseerde structuren als cellen en callus tot
georganiseerde structuren als embryo’s en meristemen. Een voorbehandeling moet het materiaal beschermen tegen de schadelijke effecten van het invriezen. Dan volgt het eigenlijke invriezen.

Na het uittesten van de verschillende technieken bleek de encapsulatie-dehydratatie de meest efficiënte techniek voor het bewaren van in vitro groeitoppen van azalea. Bij deze methode wordt een stapsgewijze precultuur van scheuttopjes in vloeibaar medium met sucrone opgezet (0.3, 0.45 en 0.6M sucrone elk 24 uur). Vervolgens worden de scheuttopjes ingekapseld in een alginaatcapsule en wordt het vochtgehalte verder verlaagd door drogen in een flow (tot 38 % van begingewicht). Daarna worden de meristemen ingevroren door rechtstreekse onderdompeling in vloeibare stikstof. Voor azalea bleek dat een voorbehandeling van het in vitro materiaal gedurende 4 weken bij 6°C het overlevingspercentage ten goede kwam.

Per experiment worden telkens 50 meristemen ingevroren. Hiervan worden 20 meristemen onmiddellijk ontdooi en op in vitro medium geplaatst om zo het overlevingspercentage te bepalen. Een cryopreservatieproces is pas succesvol als de meristemen terug uitgroeien tot planten met dezelfde karakteristieken als de moederplant. Per cultivar moeten er uiteindelijk 3 onafhankelijke herhalingen van 50 meristemen ingevroren worden met een hergroeipercentage van minimaal 20%.

Momenteel zijn van de 66 cultivars van de basiscollectie er 24 al in cryo gebracht. Van deze 24 vertonen zijn 16 verschillende cultivars die na ontdooien ontwikkelen tot scheut (tabel).

Contactpersonen: Evelien Calsyn en Johan Van Huylenbroeck
2.14. LAAT DE PLANT SPREKEN: FOTOSYNTHESEMETINGEN LATEN EEN BETERE STURING VAN HET SERREKLIMAAT TOE

Via de fotosynthese kan gevolgd worden hoe planten op korte termijn reageren op het klimaat en kunnen de gevolgen van specifieke instellingen snel getest worden. Dit laat je als teler toe meer voeling met de planten te hebben en uiteindelijk het klimaat efficiënter te sturen naar hun noden.

Planten zijn in staat om licht als energiebron te gebruiken om CO₂ in suikers om te zetten. Via de respiratie of ademhaling wordt deze energie vrijgesteld om de groei en het onderhoud van de plant te verwezenlijken. De efficiëntie van deze processen is zeer afhankelijk van omgevingsomstandigheden zoals licht (hoeveelheid en kwaliteit), temperatuur, CO₂-concentratie en relatieve luchtvochtigheid. In het kader van de sturing van het serreklimaat is het soms moeilijk in te schatten wat het effect is van een bepaalde klimaatsinstelling op de groei van de planten. Dit is te wijten aan het feit dat de effecten enkel zichtbaar worden na enkele dagen of zelfs weken. Bovendien kunnen ondertussen zodanig veel andere factoren gewijzigd zijn zodat het heel moeilijk wordt om het effect van één bepaalde klimaatsinstelling in te schatten. Het continu volgen van de fotosynthese onder praktijkomstandigheden laat toe om de reactie van de planten te bestuderen op het moment waarop een wijziging zich voordoet. Op deze manier kunnen de (middel)lange effecten van bepaalde klimaatsinstellingen voorspeld worden. Op deze wijze kan ook snel getoetst worden in welke mate de planten al dan niet gestrest worden.

Een dergelijke aanpak werd gebruikt om aan te tonen dat bij het forceren van azalea’s, tijdens de maanden november tot februari, de planten baat hebben bij assimilatiebelichting. Meer licht resulteert in meer fotosynthese. Hierdoor beschikt de plant over meer energie om de trekduur te verkorten, homogener te bloeien en grotere bloemen te vormen. Het is wenselijk om de planten voldoende ver te forceren, bij voorkeur met assimilatiebelichting, want in de huiskamer zullen ze niet voldoende licht ontvangen om de extra energie aan te maken die nodig is voor de ontwikkeling van de bloemen.

Maar niet enkel de lichthoeveelheid is belangrijk. De lichtkwaliteit speelt ook een zeer belangrijke rol. Zo werd bijvoorbeeld bij snijroos een hogere fotosynthese waargenomen bij LED assimilatiebelichting dan met SON-T licht. Tussen de rode LEDs en de combinatie rode en blauwe LEDs kon geen significante verschil gevonden worden. Effecten op de groei zullen vermoedelijk tijdens de winter groter zijn dan tijdens de zomer gezien het aandeel licht van de assimilatiebelichting dan relatief groter is. Of het gebruik van LEDs op dit moment ook economisch rendabel is, moet nog blijken uit de lopende experimenten.

Contactpersoon: Peter Lootens
De toenemende tendens naar specialisatie, schaalvergroting en verticale integratie binnen de Vlaamse sierteeltbedrijven maakt dat er een stijgende vraag is naar kennis en hertaalde informatiedoorstroming.

De Vlaamse sierteelt is een voorname speler binnen de internationale markt. De speerpunten van deze sector zijn de vermeerderings- en veredelingsbedrijven, gespecialiseerde productiebedrijven en de boomkwekerijsector. Om de concurrentiekracht van de sector in de toekomst op internationaal vlak te vrijwaren is er een belangrijke behoefte aan innovatie en productvernieuwing. De toenemende tendens naar specialisatie, schaalvergroting en verticale integratie binnen de bedrijven maakt dat er een stijgende vraag is naar kennis en hertaalde informatiedoorstroming en dat het draagvlak om nieuwe ontwikkelingen uit het onderzoek te implementeren binnen de bedrijven groter is.

SIETINET staat voor Sierteelt Technologie en Innovatie Netwerk en is een project dat instaat voor deze kennisoverdracht vanuit wetenschappelijke kenniscentra naar Vlaamse privébedrijven. Momenteel zijn er 59 bedrijven lid en zijn er 9 Vlaamse wetenschappelijke kenniscentra aangesloten. De aangesloten kenniscentra zijn Instituut voor Landbouw en Visserij Onderzoek (ILVO), als coördinator van het project, het Vlaams Interuniversitair Instituut voor de Biotechnologie (VIB), de Universiteit Gent – Vakgroep Plantaardige Productie – Laboratorium In Vitro Biologie en Tuinbouwplantenteelt (UGent), de Hogeschool Gent – Departement BIOT (Hogent), de Vrije Universiteit Brussel – Labo voor Plantengenetica (VUB), de Universiteit Antwerpen – Labo Plantenbiochemie en Fysiologie (UA), de Katholieke Hogeschool Zuid-West-Vlaanderen – Departement Verpleegkunde en Biotechnologie (KATHO), Katholieke Universiteit Leuven – Afdeling Plantenbiotechniek – Laboratorium Plantenteelt (KULeuven) en het Proefcentrum voor Sierteelt (PCS). Het IWT subsidieert dit netwerk van Vlaamse sierteeltbedrijven en Vlaamse kenniscentra onder de vorm van een ‘Technologische Dienstverlening’-project, de bedrijven betalen 20%.

Deze kennisoverdracht heeft tot doel het innovatieproces in de bedrijven sneller en diepgaander te laten verlopen. De informatiedoorstroming gebeurt voornamelijk rond de volgende thema’s: plantenbiotechnologie, in vitro technologie, veredeling en plantenfysiologie. SIETINET informeert haar leden over de nieuwe ontwikkelingen in deze domeinen via verschillende kanalen: workshops, symposia, telefonische of schriftelijke adviezen, bedrijfsbezoeken, nieuwsbrieven, literatuurmailings en via de website.

‘A day in the library is worth years in the laboratory’

Meer info: http://www.sietinet.be

Contactpersoon: Emmy Dhooghe
3. Gewasbescherming

3.1. Het onderzoeksdomein Gewasbescherming ten dienste van sector en beleid

Voor het onderzoek en de diagnostiek van ziekten en plagen is er historisch een sterke link met de sierteeltsector. Onze dienst is een referentiecentrum voor diagnostiek, met gebruik van de meest recente methoden, we hebben uitgebreide onderzoeksprojecten binnen sierteelt, en zijn Nationaal Referentielaboratorium (NRL) voor Plantenziekten. Ziekten en plagen zijn natuurlijk niet beperkt tot of typisch voor Vlaanderen, daarom zijn de Europese netwerken belangrijke fora voor onze medewerkers. In de verschillende bijdragen zetten we enkele activiteiten van de dienst speciaal in de kijker.

De geografische ligging van het ILVO maakt dat er historisch een sterke link bestaat met de sierteeltsector. Dit is zeker ook waar voor het onderzoek en de diagnostiek van ziekten en plagen. Vermeldenswaardig is tevens de uitgebreide samenwerking met het Proefcentrum Sierteelt in Destelbergen. Omtrent belangrijke aantastingen en bedreigingen bestaat er intensieve communicatie en overleg en worden meermaals onderzoeksprojecten samen ontwikkeld. De sierteeltsector doet vooral beroep op de ILVO-expertise in schadelijke insecten, mijten en schimmels, en recent ook op de dienst Virologie, waar buiten de virussen ook problemen met viroiden, fytoplasmen en mycoplasmen onderzocht worden. Problemen met bacteriën en nematoden komen voorlopig iets minder aan bod.

Onze dienst Gewasbescherming is onder andere een referentiecentrum voor wat diagnostiek betreft, met gebruik van de meest recente methoden. Aangezien er veel verschillende ziekteverwekkers en plagen behandeld worden, elk met hun specificiteit en aanwezig in zeer verschillende matrices (plantensoorten, plantendelen, plantenproducten, bodem, water...), is er een hele batterij aan technieken aanwezig. Er worden nieuwe betrouwbare methoden ontwikkeld voor diagnostiek en resistantiescreening die ook toegepast worden in ons DiagnoseCentrum voor Planten, gekend als het ILVO-DCP. We hebben uitgebreide onderzoeksprojecten over ziekten en plagen die zeer relevant zijn voor de sierteeltsector.

De ziekten en plagen zijn natuurlijk niet beperkt tot of typisch voor Vlaanderen, zeker niet in de sierteeltsector met zijn uitgebreide internationale handel. Het is dus belangrijk van hoogte te houden met de problematiek op een internationaal niveau. Vooral de Europese netwerken en werkgroepen zijn belangrijke fora voor de medewerkers van onze dienst, ze nemen er ook belangrijke taken op. Wie Europa zegt, denkt ook aan ‘quarantaine’ en
‘fytosanitaire reglementering’. ILVO-Gewasbescherming is hierin sterk betrokken. Dat is nuttig, de quarantaine (Q) maatregelen moeten in vele gevallen als voorlopige beschermende maatregelen beschouwd worden, geïnstalleerd omwille van de grote potentiële economische impact dat een bepaald organisme zou kunnen hebben. Het is op basis van nieuwe wetenschappelijke gegevens over voorkomen, verspreiding, vestiging, virulentie en beheersingsmogelijkheden dat de huidige Q status kan bediscussieerd worden en de maatregelen kunnen aangepast worden. Wanneer bijvoorbeeld blijkt dat een Q organisme wijd verspreid is in Europa en/of de schade effectief beheersbaar is, dan kan dit organisme verwijderd worden van de Q lijst. In België is het FAVV verantwoordelijk voor de controle op de aanwezigheid van Q organismen en op de naleving van opgelegde controlemaatregelen. Het FAVV heeft de ILVO-dienst Gewasbescherming aangeduid als Nationaal Referentielaboratorium (NRL) voor Plantenziekten, samen met het Centre de recherche agronomique in Gembloux (CRA-W).

Onze experten bieden wetenschappelijke ondersteuning aan het FAVV, zijn actief in kenniswerving en internationale netwerking en oefenen controle uit op de performantie van laboratoria die door het FAVV erkend zijn voor het uitvoeren van bepaalde routine-analyses. Deze verantwoordelijkheid is gebaseerd op de dienst Gewasbescherming als kenniscentrum en met een diagnosecentrum dat werkt volgens een hoge kwaliteitsstandaard; in elke discipline zijn er testen met een ISO 17025 label.

Contactpersoon: Martine Maes
3.2. *Pest Risk Analyse* van quarantaine- en alert-organismen

In een ‘pest risk analyse’ of PRA wordt er informatie vergaard over een potentieel gevaarlijk organisme, over zijn voorkomen en verspreiding, de kans op introductie, overleving en vestiging in onze omgeving en teelten, en de scenario’s en effectiviteit van beschikbare methoden voor beheersing van de pathogeen en de schade. De rapportering gebeurt volgens een uitgebreide procedure en schema. Er zijn recent twee PRAs opgemaakt voor de regio België, een voor *Fusarium foetens* en een voor *Xanthomonas axonopodis* pathovar *dieffenbachiae*.

We geven twee voorbeelden, een PRA van een schimmelziekte op Begonia en een PRA van een bacterieziekte op Anthurium, beiden opgemaakt voor de regio België. Deze studies werden als onderzoeksprojecten uitgevoerd, partieel gefinancierd door de federale overheid, dienst Contractueel Onderzoek, in samenspraak met het FAVV.

1. PRA voor *Fusarium foetens*

Fusarium foetens is een agressieve ziekteverwekker op *Begonia elatior* hybriden. Deze schimmel veroorzaakt een vaatziekte en uiteindelijk volledige rotting van de planten. Het aantal bedrijven dat *B. elatior* kweekt is beperkt in onze streek, maar de ziekteverwekker is aanwezig en lijkt gevestigd, en zoals in andere landen, is hij verantwoordelijk voor belangrijke economische schade in die bedrijven. Er is een mogelijkheid dat de ziekte zich nog verder zal verspreiden via de handel of indien nog andere gevoelige waardplanten ingang vinden.

![Fusarium foetens op Begonia](image)

Er zijn reeds in verschillende landen PRA’s geproduceerd voor deze ziekteverwekker, zoals in Nederland en de VSA, met bevindingen die nog steeds stand houden. Het ILVO-onderzoek voegt data toe.
Er zijn nu moleculaire methoden gebruikt voor de monitoring van pathogeengroei in plantgoed en plantproduct en van verspreidingsroutes naar en in de serre. We hebben aangetoond dat planten latent besmet kunnen zijn met lage schimmelconcentraties en dit voor een vrij lange periode. Deze lange opbouwperiode laat dus zelfs toe dat stekken gesneden worden van moederplanten die onopgemerkt besmet zijn. De lage besettingsgraad is ook problematisch voor de controle van het plantgoed wanneer dit in het bedrijf binnenkomt. Andere monitoringspunten in het bedrijf zijn gevoelige merkers voor F. foetens besmetting.

F. foetens is zeer waarschijnlijk een (sub)tropische schimmel en in België is hij inderdaad ook enkel in serres te vinden. De kans is dus groot dat hij buiten geen probleem zal vormen. De beheersing van de ziekte is moeilijk, waarschijnlijk vooral omwille van die herinsleep met besmet plantgoed. Alhoewel, we hebben nu ook gegevens over andere plantensoorten die in een omgeving van besmette B. elatior mogelijk drager van de schimmel worden. Besmette planten en stekken kunnen niet meer pathogeen-vrij gemaakt worden, ze zijn systemisch geïnfecteerd.

Er is maar beperkte informatie over verschillen in ziektegevoeligheid tussen cultivars, dit is eventueel een interessante piste, maar er is geen volledige resistentie te verwachten. We zien meer heil in een systeem van plantgoedproductie onder certificering, en we kunnen aanbevelingen voor opmaak van een procedure geven. Alleszins, materialen, instrumenten, groeitafels en bevloeingswater moeten systematisch ontsmet worden. Deze bedrijfshygiëne is essentieel, vooral bij plantgoedproductie.

2. PRA voor Xanthomonas axonopodis pathovar dieffenbachiae

Xanthomonas axonopodis pathovar dieffenbachiae tast planten van de aronskelkfamilie aan en vormt een hoog risico voor de plantenziekte in het gebied van oorsprong, zoals Hawaï, waar verliezen van planten van 50 tot 100% gemeld worden wanneer de condities optimaal zijn voor de ziekte. Er kunnen drie verschillende groepen van stammen onderscheiden worden;
- stammen die sterk pathogeen zijn op Anthurium en op vele andere Araceae-planten. In deze groep worden twee biotypes onderscheiden.
- stammen geïsoleerd van Syngonium, ze zijn ook virulent op Anthurium en op een beperkt aantal andere Araceae-planten.
- stammen afkomstig van andere Araceae-planten, ze zijn pathogeen op hun originele waarplant en zwak of niet pathogeen op Anthurium.

Verschillende waarplanten worden in België commercieel geproduceerd, bijvoorbeeld Dieffenbachia, Spathiphyllum, Aglaonema and Philodendron. Maar het meest belangrijk is de ziekte op Anthurium. Anthurium-brand kan een grote impact hebben op de kweek van Anthurium, vooral in serres zonder klimaatscontrole.
Xanthomonas axonopodis pv. dieffenbachiae op Anthurium

De ziekteverwekker heeft zich gemakkelijk verspreid, zelfs tot in de Nederlandse serres. De mogelijke verspreidingswegen zijn nochtans beperkt. Meest waarschijnlijk gebeurt het via import van Anthurium uit regio’s waar de ziekte bestaat. Binnen het bedrijf verspreidt de bacterie zich via water, contact en manipulatie van de planten, zoals bij het snijden van de bloemen.

De ziekteverwekker staat op een EPPO-lijst met aanbeveling tot quarantaine reglementering, wat voorlopig nog niet is doorgevoerd. De ziekte is voorlopig niet gemeld in België en zou uitgeroeid zijn in de Anthurium-serres in Nederland, zoals officieel gemeld. Maar een recente uitbraak in een bedrijf in Polen doet vermoeden dat er nog wel latent geïnfecteerde jonge planten circuleren in de EU. Het mag verondersteld worden dat in onze klimatologische condities de ziekte zich niet zou kunnen in stand houden buiten de serres van de plantenbedrijven.

De opgemaakte PRA overloopt de mogelijke trajecten en frequentie van introductie, elk met hun mogelijke gevolgen voor de situatie in België. Hij geeft verder conclusies over de kans van vestiging en verdere verspreiding. De mogelijke economische gevolgen van de ziekte worden afgewogen tegenover de kosten die gepaard gaan met analyses voor sanitaire controle, plantenruiming en andere sanitaire maatregelen in het bedrijf.

Contactpersoon: Martine Maes
3.3. **Bepalen van het voorkomen van schadelijke organismen voor planten**

Er worden gegevens gegenereerd over het voorkomen binnen België van een reeks schadelijke organismen met een quarantaine of alert status. Verschillende virus en viroiden infecteren naast groenten of fruit ook sierplanten, al of niet gepaard gaand met symptomen. Dit is recent sterk aan de orde. De status wordt opgemaakt voor *Chrysanthemum stunt viroid*, *Tomato apical stunt viroid* en *Tomato Spotted Wilt Virus*.

Ook vier *Liriomyza* soorten (mineervliegen) en *Diaphania perspectalis* (buxusmot) worden behandeld. *Liriomyza* is problematisch in groenteteelt in kas en sierteelt en *Diaphania perspectalis* ontbreken er vooralsnog gegevens. De larven veroorzaken belangrijke ontbladering in Buxus.

Er worden gegevens gegenereerd over het voorkomen binnen België van een reeks schadelijke organismen met een quarantaine of alert status. Binnen de EU regio zijn de teelt, teelttechnieken, en omstandigheden van klimaat en economische activiteit zeer divers. Een studie op nationaal niveau is dus nodig. De informatie over het voorkomen van een organisme in België is een instrument voor de overheid en moet aangeven of de uitgebreide PRA studie al of niet wenselijk is. Beide leveren argumenten aan om een organisme op EU niveau al of niet als een quarantaine organisme te klasseren. De Belgische Gewasbeschermingsorganisatie stelt een lijst samen van potentieel gevaarlijke organismen waarvoor het voorkomen in België onvoldoende gekend is.

Er is in eerste instantie geopteerd om de status op te maken voor verschillende virus en viroiden. Het betreft meestal organismen met een wijde waardeplantenreeks. Verschillende infecteren naast groenten of fruit ook sierplanten, al of niet gepaard gaand met symptomen. Dit is recent sterk aan de orde. De risico’s voor verspreiding zijn dus groot maar kennis over de actuele verspreiding met symptomatologie ontbreekt dikwijls. Binnen een gemeenschappelijk project behandelen ILVO en CRA-W samen het voorkomen van de virus en viroiden in sierteelt en in groenten en fruit.

Ook vier *Liriomyza* soorten (mineervliegen) en van *Diaphania perspectalis* (bususmot) worden behandeld. *Liriomyza* soorten zijn problematisch in groenteteelt in kas en sierteelt. Over *Diaphania perspectalis* ontbreken er vooralsnog gegevens over de verspreiding, ze is in Azië autoctoon. De larven van deze mot veroorzaken belangrijke ontbladering in Buxus.

Voor verschillende organismen wordt de huidige status opgemaakt op basis van de beschikbare literatuur en een survey, en voor bepaalde organismen is beperkt aanvullend onderzoek voorzien.
- *Chrysanthemum stunt viroid*, dat grote schade veroorzaakt in de chrysantenteelt

Stunt is één van de belangrijkste ziekten bij chrysant. Het komt voor in tal van landen, verspreid over de gehele wereld en is waarschijnlijk aanwezig in alle belangrijke chrysanten teeltregio’s. De ziekte wordt veroorzaakt door een viroïde, het CSVd.

Chrysanthemum stunt viroid op chrysant cv Mirage yellow

Viroïden zijn infectieuze agentia bestaande uit een klein circulair enkelstrengige RNA molecule, niet omgeven door een eiwitmantel zoals dit wel het geval is bij virussen. CSVd is één van de weinige viroïden die schade veroorzaakt in de sierteelt en de economische impact ervan in de chrysantenteelt is goed beschreven. Bij een aantasting kan de dwerggroei resulteren in een reductie tot meer dan 50% van de normale grootte. Gebruik van geïnfecteerde stekken kunnen het volgende jaar reducties tot meer dan 90% opleveren. Bij een aantasting worden de planten dus totaal onproductief en de gangbare teeltmethoden zorgen voor een snelle verspreiding.

- *Tomato apical stunt viroid*, omwille van zijn onduidelijke toedracht in schadebeelden en status in België

TASVd is een pospiviroïde zoals CSVd en tast nachtschadigen aan. Beide viroïden zijn van voldoende groot belang. Bij screening door het CRA-W werden in 2007 en 2008 minstens vijf positieve stalen voor TASVd ontdekt op een totaal van 400 analyses, de waardeplant was telkens *Solanum jasminoides*. Het viroïde is gesignaleerd op *S. jasminoides* in Finland en Nederland, op tomaat in Tunesië en Israël, op *Solanum pseudocapsicum* in Duitsland en op *Cestrum* sp. in Nederland. Op *S. jasmonioides* blijft de aanwezigheid van het viroïde symptoomloos, maar op tomaat komen wel degelijk PSTVd-achtige symptomen voor zoals vergeling, bossige dwerggroei en apicale bladmisvorming. In de kustregio van Israël veroorzaakt TASVd sedert 1999 ernstige verliezen in de tomatenteelt. Verder is er nog een ernstige lacune in de kennis over het waardplantenbereik van dit viroïde. Op dit moment wordt TASVd niet gereglementeerd in België en staat het sedert 2003 op de EPPO alert lijst.

symptomen van viroiden op tomaat - naar binnen krullen van de bladeren - stunt - vergeling en necroses langs de nerven
Tomato Spotted Wilt Virus, met een recente (her)introductie in Europa en een toenemend economisch schadepotentieel

TSWV is een wijd verspreid plantenvirus met een zeer brede waardplantreeks, zoals aardappel, chichorij, tomaat, sla, paprika, boon, maar ook sierplanten als pelargonium, chrysant, begonia, vlijtig liesje. De symptomen kunnen sterk variëren afhankelijk van factoren zoals waardplant, cultivar, leeftijd van de plant, omgevingsfactoren en de virus-stam. Er zijn reeds zeven thrips-soorten beschreven die de virus kunnen overdragen. Eenmaal drager, blijft de thrips infectieus zolang hij leeft. TSWV kan zich ook verspreiden via het enten en manipulaties van planten. TSWV is aanwezig op alle continenten, ook in de meeste Europese en Meditterane landen, en dit gaat gepaard met toenemende schade.

ongelijke afrijping en kringvlekken op tomaat door TSWV

Potchrysant geïnfecteerd met TSWV - kortere takjes, geelverkleuring en later bronskleurige vlekken op het blad

Diaphania perspectalis, potentieel zeer schadelijk voor het Buxus bestand in België

Buxus is tot nu toe de voornaamste waardplant voor deze mot. Opvallend aan het schadebeeld is de extreme vraatschade van de rupsen aan bladeren en twijgen, zelfs volledige kaalvraat is mogelijk. Door deze vraatschade gaat de sierwaarde van de aanplantingen volkomen verloren. Vaak is dit ook problematisch en dodelijk voor de aanplanting. Herstel kan lang duren. Een efficiënte chemische beheersing is moeilijk. De vestiging van dit plaaginsect kan voor grote problemen zorgen in de kwekerijen, openbaar groen, particuliere tuinen en buxusaanplantingen in het wild. In Vlaanderen zijn enkele gespecialiseerde buxuskwekerijen, maar ook veel sierboomkwekerijen en verschillende

rups van de buxusmot Diaphania perspectalis (foto M. van der Straten, PD, Wageningen)

- Liriomyza bryinae, L. huidobrensis, L. sativae en L. trifolii, mineervliegen met larven die aanzienlijke schade aanrichten door hun polyfaag karakter.

mineergangen van Liriomyza trifolii op chrysant (foto CSL, York)

De voedingsstippen van de adulten hebben een vermindering van de sierwaarde bij sierteeltgewassen tot gevolg en zijn ook invalspoorten voor allerlei ziekten. Bovendien zijn deze soorten Liriomyza resistent voor verschillende insecticiden. L. bryinae is een plaag in groenten (tomaat, paprika, sla, aubergine, snijboon, meloen) en kan ook in diverse sierteeltgewassen (chrysant, Gerbera) optreden. Beide andere soorten zijn vanuit subtropische gebieden ingevoerd en gedijen goed in onze kasomstandigheden. De floridamineervlieg L. trifolii en de nerfmineervlieg L. huidobrensis komen in Noord-Europa

adult Liriomyza huidobrensis (foto CSL, York)

Contactpersoon: Martine Maes
3.4. Het DiagnoseCentrum voor Planten (DCP), een betrouwbare partner voor de sierteeltsector

Het ILVO-DiagnoseCentrum voor Planten is het toonaangevend laboratorium voor plantenziekten in Vlaanderen. Een behoorlijk aantal stalen is afkomstig uit de sector sierteelt en boomkwekerij, waarvan ongeveer 70% analyses op schimmels en insecten/mijten. In de disciplines virussen, bacteriën en nematoden is het aandeel respectievelijk 40%, 30% en 10%.

In 2009 werden 8786 analyses uitgevoerd. Ongeveer de helft van deze analyses werd aangevraagd door de overheden (FAVV, Agentschap Landbouw & Visserij) voor de implementering van de fytosanitaire regelgeving. De overige analyses werden aangevraagd door telers, voorlichters, onderzoekscentra en particulieren. Een behoorlijk aantal van deze stalen is afkomstig uit de sector sierteelt en boomkwekerij. Deze worden geventileerd over de vijf disciplines van het DCP. De disciplines schimmels en insecten/mijten zijn sterk aanwezig met ongeveer 70% van de onderzoeken voor de sector. In de disciplines virussen, bacteriën en nematoden is het aandeel respectievelijk 40%, 30% en 10%. In elk van de disciplines zijn er testen die ISO 17025 geaccrediteerd zijn.

Een groot aantal analyses staan in verband met de regelgeving voor in- en uitvoer. Zo worden pelargoniumstekken uit Israël, Ethiopië en Oeganda onderzocht op de aanwezigheid van *Ralstonia solancearum*, bonsais uit Japan en China op de aanwezigheid van nematoden, orchideeën uit Thailand op *Thrips palmi* en snijbloemen uit Israël op mineervliegen. Daarnaast wordt houten verpakkingsmateriaal gecontroleerd op de Aziaatische boktor *Anoplophora glabripennis*. Deze kan erg schadelijk zijn in boomkwekerij en openbaar groen. Zeer actueel nu is de toenemende dreiging van *Anoplophora chinensis* die via bonsai en *Acer* planten kan worden ingevoerd, en ook hier in de sierteelt (boomkwekerij) massaal schade zou kunnen aanrichten. Verder worden stalen uit de boomkwekerij en sierteelt onderzocht op de aanwezigheid van *Erwinia amylovora*, *Phytophthora ramorum* en *P. kernoviae*.

Om deze analyses betrouwbaar uit te voeren zijn de recentste methodieken voor diagnose en detectie in huis en waar nodig zelf ontwikkeld. De identificatie van aaltjes gebeurt meestal door specifieke morfologische kenmerken microscopisch te analyseren. De laatste jaren wordt ook digitale beeldverwerking gebruikt. Hiermee kunnen kenmerkende details van de nematoden gemakkelijk worden gemeten en verwerkt.

Insecten en mijten worden met behulp van de Berlese-trechter techniek of de dissectiemicroscoop uit het plantenmateriaal geïsoleerd. Identificatie gebeurt aan de hand van morfologische kenmerken rechtstreeks m.b.v. een dissectiemicroscoop of na aanmaak van een preparaat via lichtmicroscopie.

In het lab mycologie worden obligate schimmels direct op de plant microscopisch gedetermineerd. Andere plantparasitaire schimmels worden vaak ook na isolatie op voedingsmedia geïdentificeerd.
In de bacteriologie wordt voor het diagnostisch onderzoek een verdunningsuitplating van de aangetaste plantenweefsels uitgevoerd. Van afgezonderde kolonies worden reincultures aangemaakt en geïdentificeerd. Dikwijls is de identiteit van de bacterie met behulp van enkele snelle, heel specifieke serologische testen te achterhalen. In andere gevallen laat het resultaat iets langer op zich wachten omdat er een plantentoets nodig is om de bacterie accuraat te kunnen benoemen.

Diverse detectie- en identificatietoetsen voor de belangrijkste virussen en virusachtige organismen zijn momenteel in ontwikkeling, zoals de klassieke serologische testen DAS en TAS-ELISA, waarmee op basis van de eiwitmantel de aanwezigheid van de virale pathogenen aangetoond wordt. Specifieke aandacht gaat ook naar het ontwikkelen van groepstesten voor gelijktijdige detectie van verschillende virale pathogenen die tot eenzelfde “genus” behoren, of ook gelijktijdige opsporing van verschillende virussen, viroiden of fytoplasma’s in een bepaalde waardplant (zogenaamde multiplex-testen). Voor de sierteelt gebeurt in hoofdzaak screening van vermeerderingsmateriaal.

Waar klassieke testen geen uitsluitelijk kunnen geven, wordt gebruik gemaakt van moleculaire technieken. Voor het identificeren, opsporen en kwantificeren van besmettingen wordt recent ook meer beroep gedaan op de real-time PCR, voor RNA virussen vooraf gegaan van een DNA-synthese-stap. In de entomologie biedt moleculaire analyse een oplossing voor de identificatie van ontwikkelingsvormen, zoals larvastadia, die anders niet te identificeren zijn. Ook de nematoden *Pratylenchus penetrans* en *Pratylenchus crenatus* zijn onder de microscoop nauwelijks van elkaar te onderscheiden. Nochtans is dat onderscheid heel belangrijk omdat *P. penetrans* vooral in boomkwekerijen en sierteelt grote verliezen kan veroorzaken, terwijl *P. crenatus* slechts occasioneel schade aan landbouwgewassen toebrengt. Daarom werd een soortspecifieke DNA-test ontwikkeld zodat in één enkele PCR reactie beide soorten kunnen worden geïdentificeerd.

Enkele feiten

Vrij recent is opvallende schade vastgesteld op verschillende *Prunus* soorten en *Magnolia* in de boomkwekerij, veroorzaakt door de ongelijke houtkever *Xyleborus dispar* en de kleine houtkever *Xyleborus saxeseni*. Nieuw voor ons land is de vaststelling van de moeilijk te beheersen wolluis *Trionymus bambusae* op bamboe.

Vrij recent zijn ook de problemen met de mijt *Cecidophyopsis malpighianus*. Deze galmijt veroorzaakt in de teelt van laurier heel wat schade door hypertrofie van de bloemknoppen en misvorming van de bloemen.

Opvallend in de glassierteelt is het optreden van de citrusspintmijt *Panonychus citri*. De schimmel *Chalara elegans* is een gevaarlijke schimmel die de laatste jaren steeds vaker de kop op steekt. De schimmel is grondgebonden en kan ernstige schade veroorzaken bij o.a. *Buxus*.

Het wortellesieaaltje *Pratylenchus penetrans* is de meest aangetroffen schadeverwekker binnen de sierteelt en boomkwekerij.
In het najaar van 2009 zijn in de bacteriële diagnostiek verschillende monsters van sierprunus met bladvlekken en hagelschot aangeleverd. Specifiek in de containerteeelt van cultivars van *Prunus laurocerasus* kan de aantasting de plant zodanig ontsieren dat ze onverkoopbaar wordt. Gewasbeschermingsmiddelen blijken niet of nauwelijks te helpen. De oorzaak van deze ‘nieuwe’ ziekte is de bacterie *Xanthomonas arboricola* pv. *pruni*. Voor dit organisme bestaat in de Europese unie een expliciet fytosanitair voorschrift (Q-organisme). De identificatie van de verkregen bacteriële isolaten is mede uitgevoerd door barcoding. Barcoding identificeert een organism te aan de hand van een zeer specifieke DNA sequentie.

Er gaat veel aandacht naar het voorkomen van viroïden zoals het aardappelspindelknolviroïde (PSTVd) en chrysantendwergziekteviroïde (CSVd), al blijft ook het tomatenbronsvlekkenvirus (TSWV) aandacht vragen, daar dit virus zowel binnen elke sector waardplanten heeft. In de sierteelt zijn zowel de viroïden als TSWV in chrysant belangrijke pathogenen.

In functie van virusvrij vermeerderingsmateriaal gebeuren er testen naar de aanwezigheid van *Odontoglossum*-kringvlekkenvirus (ORSV) en het *Cymbidium*-mozaïekvirus (CymMV), beide van groot belang in de orchideeënsector.

Het DCP functioneert als een dienstencentrum binnen de dienst Gewasbescherming, en de dynamiek en kracht van het DCP is juist die confrontatie tussen diagnostiek en onderzoek. De diagnostiek bedient zich van technieken en methoden voor detectie en identificatie van plantschadelijke organismen die in het onderzoek ontwikkeld zijn. Anderzijds worden de medewerkers van het DCP door contact met de klanten dagelijks geconfronteerd met praktijkproblemen. Deze actuele problemen kunnen de voedingsbodem zijn voor nieuwe onderzoeksinitiatieven. Daarnaast ontstaan er allianties met praktijkcentra en andere onderzoekscentra om aan te vangen met vernieuwend toegepast onderzoek, aangepast aan de problematiek in Vlaanderen. De contacten met de diverse sectoren leiden tot een duidelijke feedback naar het onderzoek toe. Op die manier kan de cirkel gesloten worden en garanderen wij door onze inzet, het succes van de land- en tuinbouw.

Contactpersoon: Lutgart De Wael
3.5. Problemen bij de bestrijding van insecten en mijten in de sierteelt en geïntegreerde beheersing als perspectief

De uitstekende resultaten die zijn bekomen bij de chemische bestrijding van plaaginsecten en mijten in de sierteelt hebben ondertussen plaats gemaakt voor enig scepticisme en voorbehoud. De overgang van de kalenderbespuitingen naar een systeem van geleide chemische beheersing is een eerste stap in de goede richting. De geïntegreerde beheersing gaat nog een stuk verder. Verschillende aspecten worden behandeld in ILVO-onderzoek.

Vooral omwille van de ontwikkeling van resistentie tegenover de producten, maar ook omwille van milieuverontreiniging en het uit de handel nemen van “goedwerkende” actieve stoffen, is het overschakelen naar meer milieuvriendelijke vormen van beheersing een absolute noodzaak. De geïntegreerde beheersing gaat hierbij nog een stuk verder, er worden meer selectief werkende middelen gebruikt en er is speciale aandacht voor het in stand houden en zelfs het opbouwen van het potentieel aan natuurlijke vijanden. Deze vorm van beheersing is reeds succesvol toegepast in de fruitteelt en dient vanaf 2014 geïntroduceerd te zijn in de gehele landbouwsector, dus ook in de sierteelt. Er zijn verschillende aspecten die rechtstreeks nuttig zijn voor de ontwikkeling van een geïntegreerde beheersing en die behandeld worden in een aantal onderzoeksprojecten van de ILVO-dienst Gewasbescherming, bijvoorbeeld monitoringsmethoden en fenologie van de plaagorganismen, nodig binnen waarschuwingsystemen, en kennis en registratie van natuurlijke vijanden. Om de geïntegreerde beheersing met succes in de sierteelt te implementeren is zeker nog verder onderzoek nodig, bovendien worden ook inspanningen verwacht van de telers.

1. Probleemstelling

In de sierteeltsector heeft de beheersing van insecten en mijten altijd al onderdeel uitgemaakt van het productieproces; een niet efficiënte beheersing leidt uiteindelijk in veel gevallen tot groeiachterstand, schade en kwaliteitsverlies. Als gevolg van de nultolerantie en de grote variatie aan planten en plaagorganismen op het sierteeltbedrijf, zijn in het verleden vaak kalenderbespuitingen gehanteerd, zelfs zonder kennis van de fenologie van de plaagorganismen. In eerste instantie zijn met die chemische gewasbescherming, gekenmerkt door zijn routinebespuitingen met breed werkende middelen, zeker uitstekende resultaten behaald. Ondertussen is echter duidelijk geworden dat deze “zuiver chemische” beheersing nadelige gevolgen heeft teweeg gebracht. Het herhaald gebruik van gewasbeschermingsmiddelen heeft ontwikkeling van resistentie bij de plaagorganismen in de hand gewerkt, en door het vaak niet-selectief karakter van de middelen worden ook de nuttige organismen gedood. Veel van die producten zijn daarenboven niet of slecht biologisch abreekbaar, wat resulteert in
residu’s op de gewassen, accumulatie van giftige stoffen in de top van de voedselketen en de aanwezigheid van schadelijke stoffen in het milieu. Omwille van deze problematiek is er, mede onder druk van de publieke opinie, een tendens naar minder milieubelastende en meer duurzame land- en tuinbouw ontstaan en is er een overschakeling naar meer milieuvriendelijke vormen van beheersing nodig.

2. De geleide chemische beheersing

De geleide chemische beheersing op basis van eigen waarnemingen of na waarschuwing door derden laat meestal toe van het aantal behandelingen sterk te reduceren. Wat nog vaak van secundair belang geacht werd, is dat de gebruikte gewasbeschermingsmiddelen breedwerkend waren en met een invloed op het milieu en op de aanwezige natuurlijke vijanden. Ondertussen voldoen een aantal “onmisbaar beschouwde” producten niet meer aan de strenge Europese normen en zij verdwijnen stilaan uit de handel. Omwille hiervan komt de geleide chemische beheersing van sommige insecten en mijten in de sierteelt nu ook onder druk te staan. Bovendien is er door het te klein aanbod aan actieve stoffen op termijn een nog hoger risico op resistentieontwikkeling. Aangezien de sierteeltsector een weinig aantrekkelijke markt is voor de fytofarmaceutische industrie, is de kans ook groot dat het aanbod aan nieuwe actieve stoffen eerder gering zal zijn in de onmiddellijke toekomst. Het is dus aangewezen om op zoek te gaan naar alternatieve beheersingsmethoden.

3. De geïntegreerde beheersing en ILVO onderzoek

De Europese wetgeving bepaalt dat de basisprincipes van de geïntegreerde beheersing vanaf 1 januari 2014 dienen toegepast te worden in de praktijk voor de ganse landbouwsector, dus ook voor de sierteelt. Omwille van de diversiteit tussen de verschillende sierteeltbedrijven onderling, vooral naar gewasassortiment en geassocieerde plaagorganismen, is het niet mogelijk een kant en klaar recept voor deze geïntegreerde beheersing te geven. De geïntegreerde beheersing steunt op een aantal basisprincipes die niet los te koppelen zijn van elkaar. Per bedrijf dient er gezocht te worden naar de optimale combinatie van bedrijfshygiëne, teeltmaatregelen, spontane natuurlijke beheersing, biologische en chemische beheersing. Bij een geïntegreerde beheersing komen de selectief werkende chemische middelen preferentieel op de laatste plaats, als correctiemiddel, zodat het nadelige effect op de nuttige fauna tot een minimum beperkt blijft. Enkele basisprincipes van de geïntegreerde beheersing worden besproken, alsook de bijdrage van ILVO onderzoek.

Een eerste basisprincipe is de preventie en/of de onderdrukking van de plaagorganismen. Dit kan reeds in belangrijke mate bekomen worden door het invoeren en het onderhouden van een strenge bedrijfshygiëne, samen met het creëren van gunstige plantengroeistandigheden, vruchtwisseling, juiste teeltmaatregelen en het gebruik van resistente gewassen. Een extra hulp kan komen van nuttige organismen, deze moeten
beschermd en bevorderd worden. Daarom is het zinvol om enerzijds selectieve bestrijdingsmiddelen te gebruiken en anderzijds, de natuurlijke vijanden alternatief voedsel en schuil- en broedplaatsen aan te bieden, bijvoorbeeld door aanleg van bloemenranden en aanplanten van hagen.

De monitoring van schadelijke organismen is misschien wel het belangrijkste principe van de geïntegreerde gewasbescherming. Door regelmatige waarnemingen op het eigen bedrijf is het mogelijk plaaginsect/mijt vroegtijdig vast te stellen en kan ingegrepen worden indien nodig. De ILVO-dienst Gewasbescherming heeft een pioniersrol gespeeld bij het ontwikkelen van waarnemingsystemen, o.a. in de sierteelt.

- Met behulp van bodemvallen is de fenologie bestudeerd van verschillende schadelijke snuitkevers in volle veld en in containerteelt. In eerste instantie ging de aandacht uit naar de gegroefde lapsnuitkever *Otiorhynchus sulcatus*; nadien is ook de fenologie opgevolgd van de schadelijke bladsnuitkevers *Phyllobius calcaratus* en *Polydrusus sericeus*.

- Door regelmatige staalnamen van *Picea* en *Chamaecyparis* is in het labo via binoculair onderzoek de ontluiking van de wintereitjes van de moeilijk te beheersen coniferenspintmijt *Oligonychus ununguis* nagegaan.

- Dezelfde methode is ook aangewend om de ontluiking van de wintereitjes van de beukenbladluis *Phyllaphis fagi* op te volgen.

Halfweg de jaren 90 zijn via de vakpers reeds waarschuwingen gegeven voor hoger genoemde plaaginsecten en mijten. Omwille van de sterke interesse vanuit de sector zijn de fenologische studies vervolgens uitgebreid naar andere moeilijk te beheersen plaagorganismen.

- Met geel gekleurde vangschalen is de fenologie van o.a. bladgalmuggen opgevolgd in de teelt van *Gleditsia*, *Salix* en *Quercus*.

- Door veldwaarnemingen is het ontluikingsstijdstip van verschillende schadelijke bladluizen, dopluizen en spintmijten bestudeerd.

De voorlichting via het waarschuwingssysteem gebeurt via de beschrijving van plaagorganismen en natuurlijke vijanden op geïllustreerde informatiefiches.

- Jaarlijks worden met medewerking van het ILVO vijf nieuwe informatiefiches aangemaakt. Deze informatie helpt de telers om de insecten en mijten beter te leren kennen (levenscyclus, waardplanten, schadebeeld) en herkennen. Het waarschuwingssysteem, oorspronkelijk operationeel voor een 5-tal plaagorganismen, is in de loop der jaren uitgebreid voor meer dan 50 plaaginsecten/mijten en enkele schimmels.
- Bij het optreden van problemen met de beheersing van insecten of mijten in de praktijk speelt het ILVO hierop in om via fenologische studies de juiste levenscyclus te ontrafelen en het gepaste tijdstip voor de behandeling te bepalen.
- In 2009 is het labo gestart met de opvolging van de moeilijk te beheersen galmijt *Cecidophyopsis malpighianus*. Deze galmijt veroorzaakt in de teelt van laurier heel wat schade door hypertrofie van de bloemknoppen en misvorming van de bloemen. Vorig jaar zijn in deze teelt ook de natuurlijke vijanden geïnventariseerd, waarbij in eerste instantie de roofmijten *Amblyseius andersoni*, *Neoseiulus cucumeris* en *Tydeus* soorten zijn vastgesteld. Deze kunnen mogelijk een rol spelen bij de onderdrukking van de galmijt. De resultaten van deze en andere fenologische studies vinden nadien dus ook hun toepassing in het waarschuwingssysteem.

Bij de geïntegreerde beheersing wordt er *op basis van een monitoring beslist of een behandeling nodig is*. Hierbij houdt men o.a. rekening met de economische schadedrempel, indien gekend. Het is beter niet te streven naar de volledige uitroeiding van het organisme, maar naar aantallen die lager zijn dan de economische schadedrempel. Bovendien dient men ook rekening te houden met de invloed van de toegepaste gewasbeschermingsmiddelen. *Deze gewasbeschermingsmiddelen moeten zo doelgericht mogelijk zijn met minimale neveneffecten voor het milieu, de menselijke gezondheid en de nuttige organismen.*

- Het ILVO-labo entomologie/acarologie heeft de invloed nagegaan van selectieve en breedwerkende insecticiden op enkele dominante loopkevers uit de boomkwekerij. De resultaten tonen aan dat het aanwenden van meer selectieve middelen zijn weerslag heeft op het in stand houden en zelfs opbouwen van het potentieel aan deze nuttige organismen.

Chemische middelen dienen uiteraard erkend te zijn. Ze worden best toegediend op het ogenblik dat het plaagorganisme het gevoeligste is en het best kan geraakt worden.

- De fenologische studies van ILVO kaderen in dit verband. De erkende gewasbeschermingsmiddelen zijn terug te vinden op het fytoweb (www.fytoweb.be).

Er is *een voorkeur voor het gebruik van niet-chemische methoden*. Het inzetten en in stand houden van de natuurlijke vijanden is wel een heel belangrijk onderdeel. In open veld komen vaak spontaan diverse natuurlijke vijanden voor die een plaag onder controle kunnen houden. Nergens wordt het spreekwoord “de vijand van mijn vijand is mijn vriend” beter geïllustreerd dan bij de biologische beheersing.
Het ILVO heeft gedurende verschillende jaren in een aantal boomkwekerijgebieden onderzoek gedaan naar de aanwezigheid van lieveheersbeestjes, zweef- en gaasvliegen, loopkevers en natuurlijk voorkomende roofmijten. Er is een groot potentieel aan predatormijten vastgesteld, waaronder een aantal belangrijke soorten. Het voorkomen van *Amblyseius andersoni* is zeer interessant; deze roofmijt kweekt men immers ook voor de biologische beheersing van spint- en roestmijten in kasteelten. Daarnaast zijn ook nog andere roofmijten courant aangetroffen, waaronder *Euseius finlandicus*, *Anthoseius bakeri* en *A. rhenanus*. Er is eveneens een grote diversiteit vastgesteld in aanwezige Coccinellidae, Syrphidae en Carabidae (loopkevers).

Het consumptiegedrag van enkele dominante loopkevers ten opzichte van eitjes en larven van de taxuskever is onder laboratoriumomstandigheden nagegaan. Kleinere loopkevers zoals *Bembidion lampros* en *B. tetracolum* voeden zich onder deze omstandigheden met eitjes; de grotere loopkevers zoals de *Pterostichus* soorten en *Agonum muelleri* consumeren de larven. In de natuur kunnen deze loopkevers uiteraard een voorkeur hebben voor andere ongewervelden; in elk geval zijn zij gekend als belangrijke predators van diverse insecten (stadia).

In samenwerking met het PCS en ADLO (F. Goossens) zijn ook de mogelijkheden nagegaan van de entomopathogene schimmel *Metarhizium anisopliae* voor de beheersing van taxuskeverlarven. Er is eveneens expertise aanwezig voor het gebruik van entomopathogene nematoden voor de beheersing van insectenlarven. De efficiëntie werd nagegaan van de roofnematoden *Steinernema carpocapsae* en *Heterorhabditis* voor de beheersing van taxuskeverlarven. De roofnematode *Steinernema glaseri* werd door het ILVO voor het eerst in Europa gedetecteerd; deze entomopathogene-nematode-stam werd door de firma Koppert aangekocht met het oog op commercialisatie.

Meer info over een aantal ILVO - onderzoeksprojecten i.v.m. geïntegreerde beheersing in de sierteelt zijn terug te vinden op www.ilvo.vlaanderen.be (Onderzoek - Plant – Gewasbescherming – onderzoek Gewasbescherming).

Toch zijn er ook nog een groot aantal gevallen waarbij biologische beheersing moeilijk of zelfs onmogelijk is. In specifieke gevallen is het nog mogelijk om chemische gewasbeschermingsmiddelen te gebruiken. Wel raadt men een *minimaal gebruik van bestrijdingsmiddelen* aan. Aangezien de reductie van de dosis soms kan resulteren in resistentieontwikkeling van het plaagorganisme is hierbij de nodige voorzichtigheid geboden. Door af te wisselen met producten uit verschillende chemische groepen komt men ook tegemoet aan de *anti-resistentiemaatregelen*. Het is tot slot ook belangrijk om *het resultaat van de bestrijdingstechnieken te evalueren*. Het effect van de behandeling wordt nagegaan door na toepassing het plaagorganisme terug te monitoren.

Samenvattend kunnen we stellen dat bij de geïntegreerde beheersing niet alleen gebruik gemaakt wordt van natuurlijke vijanden, maar ook van alle factoren die een reductie van het plaagorganisme kunnen teweeg brengen, zoals cultuurtechnische maatregelen en een
ver doorgedreven bedrijfshygiëne. Het rationeel, gericht gebruik van selectieve chemische gewasbeschermingsmiddelen met een beperkte persistentie vormt daarbij pas de laatste stap in een hele ketting van (preventieve) teelt- en bestrijdingsmaatregelen, waarbinnen ook biologische technieken hun plaats hebben. Deze middelen worden toegepast op het ogenblik dat de plaag zich in een kwetsbaar stadium bevindt. Deze beheersingsmethode kan op termijn uitmonden in een stabielere biologisch systeem, een reductie van het aantal behandelingen, en een vermindering van het risico op resistentie.

4. Noodzaak aan bijkomend onderzoek

Tot hier het goede nieuws; toch is er ook een keerzijde aan de medaille. Om de geïntegreerde beheersing verder met succes in de sierteelt te implementeren moeten nog een aantal hindernissen worden genomen. Struikelblokken zijn vooral nog het ontbreken van efficiënte natuurlijke vijanden voor sommige plaagorganismen, evenals het beperkte aanbod aan selectief werkende gewasbeschermingsmiddelen uit verschillende chemische groepen.

Voornamelijk in de glassierteelt (snijbloemen) evolueert de biologische gewasbescherming gunstig. Sommige commercieel gekweekte natuurlijke vijanden uit de groenteteelt zijn met succes ingezet in de sierteelt, ondermeer voor de beheersing van mineervlieg, kaswittevlieg, bladluis, trips en spintmijt. Daarnaast worden ook nog andere insecten, die meer specifiek zijn voor de sierteelt, biologisch bestreden zoals de taxuskever en de varenrouwmug. In de buitenteelten liggen de zaken echter meer complex en zijn de telers vooral afhankelijk van het natuurlijk regulerend vermogen. Dit heeft men niet in de hand, maar het kan wel worden opgebouwd door het gebruik van selectief werkende middelen en bepaalde teeltmaatregelen. Een nadeel in de sierteelt, en zeker bij de containterteelt in de boomkwekerij, is de korte opkweekduur; een deel van de opgebouwde populatie aan natuurlijke vijanden kan op die manier samen met de planten van het bedrijf ‘verdwijnen’. Bij de teelt in volle grond blijven de planten soms meerdere jaren staan en kunnen de natuurlijke vijanden, net zoals bij fruitbomen, een stabiel evenwicht opbouwen met de aanwezige plaagorganismen.

Een bijkomende zorg bij het toepassen van de geïntegreerde beheersing in de sierteelt zijn de hoge esthetische eisen die gesteld worden aan het product. Daardoor is bij de meeste sierplanten de tolerantiegrens voor de plaagorganismen uitermate laag of nul, en dit zowel vanuit het standpunt van de kweker als van de consument. De geïntegreerde beheersing beoogt niet de volledige beheersing van de plaag, maar wel de onderdrukking ervan tot beneden een zekere schadedrempel. En hier wringt ook het schoentje: deze schadedrempels zijn in veel gevallen nog niet eens vastgelegd. Het vastleggen van die economische schadedrempel is door het grote assortiment aan gewassen en plaaginsecten/mijten in de sierteelt niet altijd eenvoudig; ze dienen verder bepaald te worden.

Verder onderzoek naar biologische bestrijdingsmethoden is zeker nodig; op termijn zullen allicht andere bestrijders nodig zijn en ook een grotere variatie. In dit opzicht moet de zoektocht naar natuurlijk voorkomende predators/parasieten een van de hoofdtaken zijn van de onderzoeksinstituties. Nieuw gedetecteerde predators/parasieten kunnen in een
later stadium, indien als efficiënt ervaren, door biologische bedrijven worden gecommmercialiseerd voor toepassing in de praktijk.

Er ligt ook een grote verantwoordelijkheid bij de teler. De “geïntegreerde” teler zal moeten beschikken over een uitgebreide kennis van de plaagorganismen, de aanwezige nuttige organismen, en de impact van de ingezette gewasbeschermingsmiddelen op beide. De teler moet zich ook realiseren dat hij tijd zal moeten vrij maken voor een grondige en regelmatige controle of ‘scouting’ van de verschillende gewassen op zijn bedrijf. In geval van problemen kan het Diagnosecentrum voor Planten (www.ilvo.vlaanderen.be, Dienstverlening, Plant, Diagnosecentrum voor Planten) instaan voor een precieze en snelle identificatie van de plaagorganismen. Alleen bij een juiste diagnose is het mogelijk van op een verantwoorde manier bij te sturen.

5. **Besluit**

Het is duidelijk dat hoe meer kennis aanwezig is over de plaagorganismen en hun natuurlijke vijanden, de teelt(techniek) en de werking en nevenwerkingen van de gewasbeschermingsmiddelen, hoe groter de kans op slagen is bij de invoering van de geïntegreerde beheersing in de sierteelt. De verantwoordelijkheid is hier gedeeld en ligt enerzijds voor een stuk bij de onderzoeksinstitutionen en de praktijkcentra die via verder doorgedreven onderzoek, begeleiding en opleiding, oplossingen kunnen aanreiken voor actuele problemen. Anderzijds ligt ook een zeer grote verantwoordelijkheid bij de teler die zich moet inwerken in deze problematiek en de “basisprincipes van de geïntegreerde beheersing” verder moet toepassen in de praktijk.

Contactpersonen: Hans Casteels en Johan Witters
3.6. Schimmelziekten met een belangrijke impact: nieuwe ontwikkelingen en inzichten

Japanse roest (*Puccinia horiana*) bij potchrysant
Via onderzoek hopen we het kalenderspuiten in de toekomst te vervangen door geleide bestrijding en gebruik van resistentie cultivars.

Phytophthora ramorum bij rododendron
Ter bescherming van de tuinbouw, openbaar groen en bossen, zijn er sinds 2002 fytosanitaire noodmaatregelen in de EU. Het onderzoek levert wetenschappelijke gegevens over deze pathogene en de ziekte.

Cylindrocladium buxicola bij Buxus
Gezien de snelle uitbreiding van de ziekte is er vanuit de sector een dringende vraag naar kennis over deze pathogene. Het Proefcentrum voor Sierenteelt (PCS) en het Instituut voor Landbouw- en Visserijonderzoek (ILVO) hebben een vierjarig project aangevat.

1. Japanse roest (*Puccinia horiana*) bij potchrysant

Japanse roest is een belangrijke ziekte bij de teelt van potchrysant, één van de voornaamste Vlaamse sierteeltgewassen. De beheersing van Japanse roest is moeilijk omdat de ziekte nog via onbekende weg steeds opnieuw opduikt en omdat bepaalde gewasbeschermingsmiddelen soms minder goed blijken te werken, vermoedelijk door het ontstaan van fungicidenresistente stammen. Voor stekbedrijven geldt Japanse roest tevens als quarantaine organisme. Aangezien we in Vlaanderen over een aantal toonaangevende veredelaars beschikken is deze problematiek hier zeer relevant.

Via onderzoek naar een detectie- en waarschuwingsysteem enerzijds en naar ziekteresistentie anderzijds hopen we het kalenderspuiten in de toekomst te vervangen door geleide bestrijding en gebruik van resistentie cultivars.

De ziekteverwekker moet op een gevoelige manier kunnen opgespoord worden, ook de sporen van de schimmel die zich via de lucht of het water kunnen verspreiden. We hebben daartoe een methode op punt gesteld die nu verder ook gebruikt wordt om een waarschuwingsysteem uit te werken en om te onderzoeken hoe de ziekte binnenkomt in een teelt. Met diezelfde detectiemethode hebben we ook reeds de vroege ontwikkelingsstadia van de schimmel in de plant kunnen bestuderen, en bijvoorbeeld
geconstateerd dat de schimmel tijdens de zomer in de plant kan overleven zonder symptomen te veroorzaken. De veredelaars kunnen nu ook hun bestaande en nieuwe cultivars laten testen op resistentie tegenover Japanse roest. Deze test werd ontwikkeld en kan nu aangevraagd worden in het DiagnoseCentrum voor Planten (ILVO-DCP), waar ze reeds routinematig uitgevoerd wordt. Een dergelijke test is echter enkel waardevol indien gebruik gemaakt wordt van representatieve schimmel-isolaten. Sommige isolaten kunnen veel meer cultivars infecteren dan andere, en het zijn net die virulente isolaten die interessant zijn in deze testen. We hebben een wereldwijde collectie van de schimmel aangelegd en gescreend, en de virulente isolaten zijn geselecteerd. De integratie van de resultaten uit deze verschillende onderzoeksactiviteiten heeft dus reeds geleid tot nieuwe kennis en inzichten en moet in de toekomst verder bijdragen tot haalbare strategieën voor de duurzame beheersing van Japanse roest.

2. **Phytophthora ramorum bij rododendron**

Phytophthora ramorum is een nieuwe *Phytophthora* soort die sinds een vijftiental jaar verantwoordelijk is voor het massaal afsterven van lokale eiken aan de westkust van de VS, het zogenaamde “Sudden Oak Death”. In Europa en in België wordt *P. ramorum* ook gevonden, maar hoofdzakelijk in de tuinbouwsector en vooral op *Rhododendron*. De schade bij bomen in Europa is totnogtoe beperkt, maar het mogelijke gevaar voor de tuinbouwsector en voor openbaar groen en bossen heeft sinds 2002 geleid tot EU fytosanitaire noodmaatregelen. Bij vaststelling van *P. ramorum* in een bedrijf volgen
uitgebreide quarantaine maatregelen. Vlaanderen is één van de grootste producenten van rododendron in Europa, waardoor deze problematiek hier zeer relevant is. In 2002 waren er bij het nemen van de noodmaatregelen nog weinig wetenschappelijke gegevens beschikbaar voor het inschatten van het risico voor Europese tuinbouwbedrijven en openbaar groen. Zowel beleidsmakers als telers hadden dus nood aan meer wetenschappelijke informatie over de ziekte. Om die reden werd onder andere onderzoek uitgevoerd naar de insleep, verspreiding en beheersing van deze ziekteverwekker in de tuinbouwbedrijven. Het onderzoek heeft aangetoond dat de verspreiding van *P. ramorum* vooral van plant tot plant gebeurd, via direct contact met een aangetast plantendeel. Maar de zoösporen, de mobiele zwemsporen, kunnen ook via het drainagewater vele meters ver geraken en via opspattende regen of omgevallen planten terug gevoelige plantendelen besmetten en nieuwe infecties veroorzaken. De ziekteverwekker kan zich ook onopgemerkt ophouden in de wortelkuit van de planten en daar tot zeker 8 maanden lang overleven, wat een belangrijk risico vormt voor verspreiding van *P. ramorum* in het internationale commerciële plantencircuit. Vanaf de vatbaarheid van rododendron cultivars voor *P. ramorum* verschilt sterk en is gecorreleerd met de vatbaarheid t.o.v. andere *Phytophthora* soorten. Bepaalde fungiciden zijn zeer effectief voor de preventieve bovengrondse beheersing van *P. ramorum*. Er is wel een indicatie dat er een aanzienlijk risico is op de ontwikkeling van resistentie tegen bepaalde fungiciden, maar dergelijke resistentie treedt nog niet op tegen de meeste fungiciden in de praktijk. Uit de genetische structuur van de *P. ramorum* populatie in België kunnen we besluiten dat er in Europa initieel één bepaald genotype geïntroduceerd is en zich epidemisch verspreid heeft. Via stapsgewijze mutatie zijn dan andere, steeds uniekere genotypes ontstaan die aan de basis liggen van de huidige, nog zeer beperkte, genetische diversiteit. Koppeling van informatie over genotype en isolatiejaar en -plaats toont aan dat op sommige bedrijven meerdere aparte introducties hebben plaatsgevonden en dat *P. ramorum* in bepaalde gevallen (latent) aanwezig gebleven is. Eradicatie is dus niet evident. Deze nieuwe inzichten laten toe om de pathogeen zo effectief mogelijk te beheersen op bedrijfsniveau en kunnen helpen om de beleidsmaatregelen zo goed mogelijk af te stemmen op het reële schaderisico.

3. *Cylindrocladium buxicola* bij Buxus

De laatste jaren wordt de Vlaamse buxusteelt geplaagd door een ziekte die veroorzaakt wordt door de schimmel *Cylindrocladium buxicola*. Gezien de snelle uitbreiding van de ziekte is er vanuit de sector een dringende vraag naar kennis over deze pathogen. Het Proefcentrum voor Sierkweek (PCS) en het Instituut voor Landbouw- en Visserijonderzoek (ILVO) hebben daarom een vierjarig project
aangevat, dat in september 2009 werd opgestart. In dit project worden de diversiteit en epidemiologie van de schimmel en de mogelijke resistentie aanwezig in de waardplant onderzocht. Deze kennis moet in de toekomst leiden tot een meer efficiënte klassieke bestrijding, aangevuld met teelttechnische en resistentiemaatregelen.

Buxus is één van de meest gebruikte planten in de moderne tuinaanleg, die lange tijd geen noemenswaardige fytoSanitaire problemen kende. Sinds ongeveer 2006 wordt de teelt echter geplagd door uitbraken van twee schimmelziekten: Cylindrocladium buxicola en Volutella buxi. Hierbij wordt aangenomen dat Cylindrocladium buxicola optreedt als primaire pathogeen, terwijl Volutella optreedt als wond- of secundaire parasiet. De huidige beheersing van deze schimmelziekte bestaat voornamelijk uit een regelmatige chemische bestrijding door middel van kalenderbespuitingen. Deze fungicidenbehandelingen vormen een bijkomende kost voor de kweker en een last op het milieu. Bovendien zijn slechts een klein aantal fungiciden officieel erkend, waarvan enkele verder gelimeerde zullen worden in gebruik. Een verminderd aantal bruikbare producten verhoogt de kans op resistentievorming tegen deze fungiciden, waardoor het mogelijk is dat chemische bestrijding alleen de ziekte niet efficiënt meer zal kunnen controleren in de toekomst.

Bovendien is de kennis omtrent deze pathogeen zelf, de epidemiologie en de waarplantresistentie zeer beperkt, waardoor er nog te weinig beroep kan worden gedaan op aangepaste teelttechnische maatregelen of ziekteresistentie. Gezien de uitbreiding van de ziekte is er zowel vanuit de boomkwekerijsector als de tuinaanleg dus een dringende vraag naar meer kennis.

In het kader van deze problematiek wordt een IWT-project uitgevoerd met als partners het Proefcentrum voor Sierteelt (PCS) en het Instituut voor Landbouw- en Visserijonderzoek (ILVO). Specifiek wordt onderzoek gevoerd naar:

1) **Pathogeendiversiteit:** morfologische, fysiologische en genetische diversiteit, pathotypes, fungicidenresistentie
2) **Epidemiologie:** condities voor verspreiding en overleving van de schimmel en invloed van klimaatfactoren
3) **Waardplantresistentie:** screening van buxuscultivars en -soorten, plant-pathogene interactie en overerving van resistentie

Een grondige kennis van de biologie van Cylindrocladium buxicola moet gerichte fungicidenbehandelingen toelaten. Het bestaande PCS waarschuwingssysteem in de sierboomkwekerij is hierbij een belangrijk communicatiekanaal. Bovendien zal onderzoek uitgevoerd worden naar de methoden van verspreiding, overleving en insleep op bedrijven, zodat aangepaste teelttechnische maatregelen kunnen getroffen worden. Op langere termijn kan de kennis in dit project leiden tot de ontwikkeling van resistente cultivars. Het geheel van chemische en teelttechnische maatregelen en gebruik van waardplantresistentie moet uiteindelijk leiden tot een goede controle van de ziekte en het veilig stellen van de Vlaamse buxusteelt.

Contactpersoon: Kurt Heungens
3.7. Optimalisatie van de spuittechniek- en apparatuur in de sierteelt

Siertelers worden meer en meer geconfronteerd met ziekten en plagen die nauwelijks onder controle te houden zijn. Een goede indringing en uniforme depositie van het product zijn noodzakelijk. Een aangepaste en correcte spuittechniek vormt dan ook de basis van een efficiënte gewasbescherming in de sierteelt.

1. Inleiding

In heel wat sierteeltgewassen worden de telers meer en meer geconfronteerd met specifieke ziekten en/of plagen die nauwelijks onder controle te houden zijn. Het komt er in de toekomst voor de siertelers op aan de schaarse middelen die nog ingezet kunnen worden zo efficiënt mogelijk toe te passen. Een efficiënt gebruik vertaalt zich in twee belangrijke doelstellingen: enerzijds is een goede indringing en uniforme depositie van het gewasbeschermingsmiddel noodzakelijk en anderzijds draagt een homogene verdeling over het te behandelen gewas sterk bij tot het uiteindelijke spuitresultaat. Om dit te realiseren werd in 2006 het onderzoeksproject “Optimalisatie van de spuittechniek- en apparatuur in de sierteelt” in samenwerking met Proefcentrum voor Sierteelt (PCS) gestart dat gefinancierd wordt door IWT Vlaanderen.

2. Doelstellingen

De hoofddoelstelling van dit onderzoek is het realiseren van een verbeterde, homogene indringing en uniforme depositie van gewasbeschermingsmiddelen in sierteeltgewassen met het oog op een verbetering van de biologische efficiëntie. Om dit te verwezenlijken richt dit onderzoek zich enerzijds op de ontwikkeling, bouw & validatie van 'alternatieve' spuitapparatuur en anderzijds het formuleren van specifieke richtlijnen voor een optimale spuittechniek voor verschillende typegewassen. Het evalueren van de verschillende spuittechniek gebeurt op basis van de gemeten deposities en hun biologische efficiëntie. Deze testen worden zowel in labo als in praktijkomstandigheden uitgevoerd.

3. Enkele realisaties

- Het gebruik van een horizontale spuitboom en het effect van dopkeuze, spuitvolume, luchtondersteuning en spuitrichting op depositie, indringing en bedekkingsgraad in klimop
Ontwikkeling van een innovatieve spuittechniek om potplanten op hangboorden te bespuiten

Het gebruik van verticale en horizontale spuitbomen in diverse gewassen en de vergelijking met de traditionele lansspuit: depositie, biologische efficiëntie en operator exposure

Verschillende praktische richtlijnen m.b.t. spuittechniek in de sierteelt. (via www.pcsierteelt.be en doorklikken naar publicaties → spuittechniek)

4. Besluit

Een aangepaste spuittechniek leidt zeker in de sierteelt tot een efficiënter en lager gebruik van gewasbeschermingmiddelen en biedt een aantal belangrijke voordelen. Zo is er een direct financiële winst op de uitgespaarde hoeveelheden fytoproducten. Een uniforme bespuiting resulteert in een lager fytotoxisch risico: minder plantenuitval, minder groeiremming, homogener loten,...wat een betere prijszetting oplevert. Daarenboven zal de gewasbescherming met behulp van een geoptimaliseerde spuitpraktijk minder tijd en arbeid vragen wat eveneens een economisch pluspunt is. Ook de gezondheidsrisico's nemen af bij gebruik van aangepaste spuitapparatuur en -technieken.

Contactpersonen: Dieter Foqué en David Nuyttens
3.8. **De invloed van de bemesting op de gewasontwikkeling en de knolkwaliteit**

Onderzoek uitgevoerd in 2001 en 2002 toonde geen eenduidig verband aan tussen verschillen in knolkwaliteit en verschillen in teelt- en bewaarcondities. De voor de teelt onderzochte parameters waren de P-, K-, Mg-input, de minerale N (0-60 cm), de gietwaterkwaliteit en de totale hoeveelheid water (neerslag plus watergift). De onderzoeksvraag bij verder onderzoek in 2005 en 2006 was of de aard van de toegepaste organische basisbemesting van invloed is op de knolkwaliteit.

1. **Materiaal en methoden**

Op 2 praktijkpercelen, perceel 1 en perceel 2, werd een bemestingsproef aangelegd, met volgende objecten: stalmest en/ of minerale bemesting versus schimmeldominante CMC-compost plus organische handelsmeststof. CMC staat voor gecontroleerde microbiële compostering. Het composteringsproces wordt aangestuurd en er wordt gebruik gemaakt van een microbiële starter. De compost werd bereid op het ILVO.

In 2005 was een bijkomende factor het type *Begonia* ‘Pendula Wit’ en ‘Dubbel Zalm’ op perceel 1 en ‘Fimbriata Geel’ en ‘Fimbriata Roze’ op perceel 2. In 2006 werd op beide percelen slechts voor één begonia type van de compostbemesting vergeleken met de stalmestbemesting, begonia type ‘Splendide Mix’ voor perceel 1 en *Begonia* type ‘Dubbel Oranje’ voor perceel 2.

De compostobjecten ontvingen geen bijbemesting tijdens de teelt in tegenstelling tot de objecten waar de basisbemesting met stalmest gebeurde. Er was geen verschil in gewasbescherming, watergift en grondbewerking tussen compost- en stalmestobjecten.

De keuring van het begoniagewas gebeurde volgens de officiële criteria opgesteld voor de export naar Japan. Een beoordeling van de knolkwaliteit gebeurde op grond van het percentage droogrot tijdens de bewaring en het percentage niet uitlopen van resterende gezonde knollen na de bewaring.

2. **Resultaten teeltseizoen 2005**

Tabel 1: Gewaskeuring op 22/09/2005

STGEW: Stand Gewas; **GEZ:** Gezondheid; **UNIF:** Uniformiteit; **VERM:** Vermenging (min. score – max. score 1-9); **OLIEVL:** Olievlekken (VO: Verspreide Olievlekken, PO: Plekken Olievlekken)

<table>
<thead>
<tr>
<th>PERCEEL 1</th>
<th>STGEW</th>
<th>GEZ</th>
<th>UNIF</th>
<th>VERM</th>
<th>TOTAAL</th>
<th>KLASSE</th>
<th>OLIEVL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENDULA WIT</td>
<td>COMPOST</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>29</td>
<td>B</td>
</tr>
<tr>
<td>PENDULA WIT</td>
<td>STALMEST</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>29</td>
<td>B</td>
</tr>
<tr>
<td>DUBBEL ZALM</td>
<td>COMPOST</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>34</td>
<td>A</td>
</tr>
<tr>
<td>DUBBEL ZALM</td>
<td>STALMEST</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>32</td>
<td>A</td>
</tr>
</tbody>
</table>

Tijdens de teelt werd de epifytische besmetting van Xanthomonas axonopodis pv. Begoniae, de bacterie die de olievlekkenziekte veroorzaakt, bepaald. Opvallend was de veel lagere besmetting bij de compostobjecten (tabel 2).

Tabel 2: Epifytische besmetting door Xanthomonas axonopodis pv. Begoniae

Xba #/cm²: aantal bacteriën per cm² bladoppervlakte

<table>
<thead>
<tr>
<th>datum</th>
<th>Xba #/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PERCEEL 1 - DUBBEL ZALM</td>
</tr>
<tr>
<td></td>
<td>COMPOST</td>
</tr>
<tr>
<td>8/08/05</td>
<td><2</td>
</tr>
<tr>
<td>19/08/05</td>
<td>1225</td>
</tr>
<tr>
<td>5/09/05</td>
<td>8925</td>
</tr>
<tr>
<td>21/09/05</td>
<td>3675</td>
</tr>
<tr>
<td>6/10/05</td>
<td>4400</td>
</tr>
</tbody>
</table>

De bewaarproef in 2006 op knollen geteeld in 2005 wees uit dat er bij knollen van het begonia type ‘Dubbel Zalm’ (perceel 1) afkomstig van het stalmestobject een meer dan dubbel zo hoog uitvalpercentage voorkwam dan bij dat type knollen afkomstig van het compostobject. ‘Dubbel Zalm’ staat bekend als zijnde gevoelig voor bewaarrot. De drie andere types vertoonden bij beide bemestingtypes een quasi even groot bewaarverlies (tabel 4). Wat betreft het ‘niet uilopen’ was bij het begonia type ‘Fimbriata Geel’ (perceel
2) het uitvalpercentage voor knollen afkomstig van het compostobject dubbel zo hoog als het percentage voor knollen afkomstig van het stalmestobject (tabel 4).

3. Resultaten teeltseizoen 2006

Tabel 3: Gewaskeuring op 31/08/2006

STGEW: Stand Gewas; GEZ: Gezondheid; UNIF: Uniformiteit; VERM: Vermenging (min. score – max. score 1-9);
OLIEVL: Olievlekken (VO: Verspreide Olievlekken, PO: Plekken Olievlekken)

<table>
<thead>
<tr>
<th>TYPE/ PERCEEL</th>
<th>OBJ ECT</th>
<th>STGEW</th>
<th>GEZ</th>
<th>UNIF</th>
<th>VERM</th>
<th>TOTAAL</th>
<th>KLASSE</th>
<th>Olievlekken</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPLENDIDE MIX</td>
<td>COMPOST</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>28</td>
<td>B</td>
<td>VO</td>
</tr>
<tr>
<td>PERCEEL 1</td>
<td>STALMEST</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>26</td>
<td>C</td>
<td>VO</td>
</tr>
<tr>
<td>DUBBEL ORANJE</td>
<td>COMPOST</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>28</td>
<td>B</td>
<td>PO</td>
</tr>
<tr>
<td>PERCEEL 2</td>
<td>STALMEST</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>28</td>
<td>B</td>
<td>PO</td>
</tr>
</tbody>
</table>

Voor begonia type ‘Splendide Mix’, perceel 1 werd een 3 à 4 maal zo hoog bewaarverlies (%) van knollen vastgesteld bij het stalmestobject dan bij het compostobject. Wat betreft het percentage ‘niet uitlopen’ werden geen opmerkelijke verschillen vastgesteld tussen compost- en stalmestobject en dit voor beide percelen. Bij een relatief groot gedeelte van de knollen van begonia type ‘Splendide Mix’ die uitliepen, verliep de scheutvorming zeer traag. Voor het compostobject werd dit vastgesteld bij 23% van de uitgelopen knollen en voor het stalmestobject bij 38%. Tabel 4 geeft de uitvalpercentages weer bij bewaring en voor ‘niet uitlopen’.
Tabel 4: % droogrot (%ROT) tijdens de bewaring en het % niet uitlopen (%NIET UIT) van na bewaring gezonde knollen

<table>
<thead>
<tr>
<th>TYPE/ PERCEEL-JR</th>
<th>OBJECT</th>
<th>%ROT</th>
<th>%NIET UIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PENDULA WIT</td>
<td>COMPOST</td>
<td>7,6</td>
<td>16,6</td>
</tr>
<tr>
<td>PERCEEL 1 - 2005</td>
<td>STALMEST</td>
<td>6,1</td>
<td>18,3</td>
</tr>
<tr>
<td>DUBBEL ZALM</td>
<td>COMPOST</td>
<td>6,0</td>
<td>14,8</td>
</tr>
<tr>
<td>PERCEEL 1 - 2005</td>
<td>STALMEST</td>
<td>13,1</td>
<td>14,6</td>
</tr>
<tr>
<td>FIMBRIATA Geel</td>
<td>COMPOST</td>
<td>2,0</td>
<td>32,7</td>
</tr>
<tr>
<td>PERCEEL 2 - 2005</td>
<td>STALMEST</td>
<td>1,3</td>
<td>16,1</td>
</tr>
<tr>
<td>FIMBRIATA Roze</td>
<td>COMPOST</td>
<td>6,3</td>
<td>11,8</td>
</tr>
<tr>
<td>PERCEEL 2 - 2005</td>
<td>STALMEST</td>
<td>5,9</td>
<td>16,2</td>
</tr>
<tr>
<td>SPLENDIDE MIX</td>
<td>COMPOST</td>
<td>7,2</td>
<td>7,8</td>
</tr>
<tr>
<td>PERCEEL 1 - 2006</td>
<td>STALMEST</td>
<td>24,8</td>
<td>5,8</td>
</tr>
<tr>
<td>DUBBEL ORANJE</td>
<td>COMPOST</td>
<td>4,7</td>
<td>2,8</td>
</tr>
<tr>
<td>PERCEEL 2 - 2006</td>
<td>STALMEST</td>
<td>6,4</td>
<td>1,4</td>
</tr>
</tbody>
</table>

Tabel 5: Plantsapmetingen

<table>
<thead>
<tr>
<th>OBJECT</th>
<th>DATUM</th>
<th>PERCEEL 1</th>
<th>PERCEEL 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>brix</td>
<td>pH</td>
<td>EC</td>
</tr>
<tr>
<td>COMPOST</td>
<td>jong</td>
<td>1,2</td>
<td>1,7</td>
</tr>
<tr>
<td></td>
<td>oud</td>
<td>1,1</td>
<td>2,1</td>
</tr>
<tr>
<td>STALMEST</td>
<td>jong</td>
<td>1,2</td>
<td>1,7</td>
</tr>
<tr>
<td></td>
<td>oud</td>
<td>1,2</td>
<td>1,9</td>
</tr>
<tr>
<td>COMPOST</td>
<td>jong</td>
<td>1,4</td>
<td>1,7</td>
</tr>
<tr>
<td></td>
<td>oud</td>
<td>1,3</td>
<td>2,0</td>
</tr>
<tr>
<td>STALMEST</td>
<td>jong</td>
<td>1,5</td>
<td>1,8</td>
</tr>
<tr>
<td></td>
<td>oud</td>
<td>1,5</td>
<td>1,8</td>
</tr>
<tr>
<td>COMPOST</td>
<td>jong</td>
<td>1,8</td>
<td>1,3</td>
</tr>
<tr>
<td></td>
<td>oud</td>
<td>1,3</td>
<td>1,4</td>
</tr>
<tr>
<td>STALMEST</td>
<td>jong</td>
<td>1,6</td>
<td>1,3</td>
</tr>
<tr>
<td></td>
<td>oud</td>
<td>1,4</td>
<td>1,4</td>
</tr>
</tbody>
</table>
Op 10 november werden per perceel en per object stalen genomen voor de analyse van het stikstofresidu einde teelt in de lagen 0-30 cm, 30-60 cm en 60-90 cm. Op het stalmestgedeelte van perceel 2, waar de minerale bijbemesting om praktische redenen quasi geheel achterwege bleef, werd een zeer lage stikstofresiduwaarde (0-90 cm) genoteerd. Voor het compostgedeelte lag die waarde meer dan 30 eenheden hoger dan voor het stalmestgedeelte, maar bedroeg nog niet de helft van de toegestane waarde van 90 kg N/ha. Meer dan 60% van het residu kwam er voor in de laag van 60-90 cm, die kleig van textuur is. Op perceel 1 lag de waarde voor het stalmestgedeelte meer dan 30 eenheden hoger dan de waarde voor het compostgedeelte, en benadert daarmee de maximale toegestane waarde. De stikstofresiduwaarden zijn terug te vinden in tabel 6.

Tabel 6: Stikstofresiduwaarden in kg N/ha

<table>
<thead>
<tr>
<th>PERCEEL/TYPE</th>
<th>OBJECT</th>
<th>0-30 cm</th>
<th>30-60 cm</th>
<th>60-90 cm</th>
<th>0-90 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERCEEL 1</td>
<td>COMPOST</td>
<td>12,3</td>
<td>19,8</td>
<td>15,5</td>
<td>47,6</td>
</tr>
<tr>
<td>SPLENDIDE MIX</td>
<td>STALMEST</td>
<td>20,0</td>
<td>27,2</td>
<td>35,2</td>
<td>82,4</td>
</tr>
<tr>
<td>PERCEEL 2</td>
<td>COMPOST</td>
<td>9,1</td>
<td>7,4</td>
<td>27,1</td>
<td>43,6</td>
</tr>
<tr>
<td>DUBBEL ORANJE</td>
<td>STALMEST</td>
<td>6,5</td>
<td>1,2</td>
<td>3,8</td>
<td>11,5</td>
</tr>
</tbody>
</table>

4. Besluiten

Op grond van deze tweearige proef werd voor perceel 1 bij herhaling vastgesteld (Dubbel Zalm in 2005 en Splendide Mix in 2006) dat een toepassing van compost aangevuld met organische bemesting in een betere knolkwaliteit resulteert op het vlak van bewaring, dit in vergelijking met bemesting met stalmest in combinatie met een minerale bemesting.

Ook zeer opvallend in 2005 was de lagere besmettingsgraad van Xanthomonas axonopodis pv. Begoniae bij de compostobjecten op beide percelen.

De aard van de organische voorraadbemesting blijkt dus gevolgen te hebben voor de bodemconditie en de daaruit resulterende gewasconditie.

Contactpersonen: Koen Willekens, Alex De Vliegher, Johan Van Vaerenbergh en Adrien Saverwyns
4. SIERTEELT EN MAATSCHAPPIJ

4.1. TOEKOMSTVERKENNING MIRA-S 2009 – SECTOR GLASTUINBOUW - Wat staat de sierteelt te wachten in 2030?

Wat staat de sierteelt te wachten in 2030? Aan de hand van verschillende mogelijke scenario’s wordt een toekomstvisie uitgewerkt.

1. Probleemstelling

Deze studie kadert binnen het decretaal vastgelegde MIRA-S of milieuverkenningsrapport waarin een beschrijving wordt gegeven van de verwachte ontwikkelingen van het milieu bij ongewijzigd beleid en bij gewijzigd beleid volgens een aantal relevant geachte scenario’s. Een dergelijke scenario-oefening gebeurt traditiegetrouw voor alle relevante maatschappelijke clusters, zoals huishoudens, industrie, energie, transport, handel en diensten, en landbouw. Naast voor de landbouwsector in zijn geheel, is ditmaal een bijkomende scenario-oefening uitgevoerd voor de glastuinbouw. Dat is nuttig omdat de glastuinbouw binnen deze sector een grote verbruiker is van energie en water. Bij energie moet daarbij rekening gehouden worden met de daarbij horende emissie van broeikasgassen en andere polluenten. De studie kwam tot stand door een samenwerking tussen de Afdeling Monitoring en Studie (AMS) van het Departement Landbouw en Visserij en de Eenheid Landbouw en Maatschappij van het Instituut voor Landbouw- en Visserijonderzoek (ILVO).

2. Beschrijving glastuinbouwsector

Het eerste deel van het rapport is gewijd aan een uitvoerige beschrijving van de glastuinbouwsector, met als referentiejaar 2006. Deze informatie moest het mogelijk maken om de sector te karakteriseren en een aantal parameters te kwantificeren om ze te kunnen integreren in het voor de scenario-oefening te genereren model.

3. Scenario-studie

In het tweede gedeelte wordt het model ontwikkeld en worden de aannames verhelderd die nodig zijn voor het ontwikkelen van de drie geselecteerde beleidsscenario’s: het referentie- of BAU-scenario (Business As Usual) zonder nieuw beleid, het Europa-scenario
(met bijkomende maatregelen om de Europese doelstellingen te halen) en het zogenaamde visionaire scenario (met drastische/visionaire/transitiemaatregelen nodig om de langetermijndoelstellingen te realiseren). In de drie scenario’s werd er vanuit gegaan dat de totale oppervlakte aan glastuinbouwbedrijven in Vlaanderen constant zal blijven.

Uit de scenario-oefening zelf blijkt in eerste instantie dat het energieverbruik in alle scenario’s zal afnemen ten opzichte van het jaar 2006. Dit is tegengesteld aan de algemene trend van toenemend energieverbruik in de andere sectoren. De verklaring hiervoor is het hoge aandeel van de energiekosten in de totale kosten van een glastuinbouwbedrijf. Hierdoor zal steeds gezocht worden naar goedkopere mogelijkheden voor het energieverbruik. Dit uit zich in verschillende mogelijkheden: reductie van het brandstofgebruik en het gebruik van goedkopere brandstoffen of technologieën, of overschakelen naar teelten die minder energie behoeven.

Op de tweede plaats is aandacht besteed aan de kwestie van de energie-efficiëntie en hoe zich dat zou kunnen vertalen in de drie scenario’s.

4. Emissies

Een derde luik van de scenariostudie heeft betrekking op de emissies. Deze worden zowel volgens de zogenaamde MIRA-benadering als volgens de “CO2-voetafdruk”-methode benaderd.

Uit de door de auteurs geformuleerde bemerkingen blijkt duidelijk dat nog meer discussie nodig is over het al of niet afwetelen van emissies tussen sectoren onderling. Ook zijn er vragen over wat men het best kan doen met restwarmte: ze valoriseren of ze van in het begin vermijden. Nog met betrekking tot restwarmtetechnologie is er de moeilijkheid dat de glastuinbouw te afhankelijk kan worden van de gekoppelde bedrijvenzone, tenzij men warmtenetwerken kan realiseren met een voldoende groot aantal warmteaanbieders en -afnemers. Het glastuinbouwbedrijf zal onrechtstreeks ook afhankelijk blijven van fossiele brandstoffen, tenzij de warmteleverende bedrijven hernieuwbare energiebronnen zouden gebruiken. Daaraan gekoppeld is de vraag naar de beschikbaarheid van de voor dit doel inzetbare hernieuwbare energiebronnen.

Vanuit het perspectief van de gevoeligheid van de analyse blijken verschuivingen in de teelten een zeer grote impact te hebben op het energiegebruik van de glastuinbouw in Vlaanderen. Door het aandeel aan energie-intensieve teelten te vergroten of te
verminderen kan het energiegebruik respectievelijk sterk stijgen of dalen. Verwacht wordt dat deze gevoeligheid in de toekomst kan verminderen als gevolg van de onder druk van de hoge energieprijzen nog te verwachten technologische vooruitgang. Volgens de experts kan die resulteren in nog erg belangrijke bijkomende efficiëntieverbeteringen op het vlak van energiebrongebruik, reductie van de energiebehoefte en beperken van de energieverliezen.

5. Trajectschets transitie richting visionaire scenario

Tot slot is een trajectschets gegeven voor een transitie richting visionaire doelstelling: het betreft een reeks beschouwingen over wat nodig is om in de richting van het visionaire scenario te evolueren. Daarbij wordt aandacht besteed aan volgende aspecten: stapsgewijze aanpak voor het realiseren van de ambities, benodigd instrumentarium, financiering, regelgeving en andere factoren.

Aangezien de energieprijzen een groot deel van de kosten bepalen, zullen energiebesparende maatregelen noodzakelijk zijn, waarbij de begininvesteringen aanzienlijk kunnen zijn. Hierbij zal het beleid bepalend zijn om bepaalde experimenten met energiebesparende technieken te promoten en te ondersteunen, tezamen met de mogelijkheid om glastuinbouwclusters toe te laten en zo de noodzakelijke vervanging van het huidige glasareaal te versnellen. Indien dit niet gebeurt, zal de sierteelt een moeilijke toekomst tegemoet gaan.

Contactpersonen: Bert Vander Vennet en Dirk Bergen
De sierteelt in Vlaanderen heeft de laatste decennia een grote evolutie gekend. Er werden goede beslissingen genomen en beslissingen die achteraf minder goed uitkwamen. Op basis van de getuigenissen van bevoorrechte getuigen wordt getracht om hier een beeld van te schetsen.

1. ‘Back to the future’

In de film ‘Back to the future’ uit 1985 gaat het hoofdpersonage samen met een vriend in een tijdmachine terug naar het verleden. Als onderzoekers beschikken wij niet over een tijdmachine, om terug naar het verleden te kijken van de Vlaamse sierteelt doen wij een beroep op een aantal bevoorrechte getuigen; dit zijn mensen die hun sporen verdiend hebben in de sierteelt en vergrijsd zijn in de materie. Op basis van deze getuigenissen zal getracht worden om na te gaan wat de positieve en negatieve punten zijn geweest voor de Vlaamse sierteelt. De bedoeling is dat hieruit lessen kunnen getrokken worden die in de toekomst voor de sierteelt belangrijk kunnen zijn. Om dit te bereiken werden met elf bevoorrechte getuigen gesprekken gevoerd van ongeveer twee uur. Deze gesprekken werden uitgeschreven en vervolgens geanalyseerd. De analyses zijn nog volop aan de gang maar uit de eerste resultaten blijkt toch dat de meningen van de bevoorrechte getuigen over het algemeen vrij gelijklopend zijn. De sierteelt onder glas de ed het in de jaren zestig vrij goed, vooral voor de kasplanten was dit een bloeiperiode met relatief weinig concurrentie en als gevolg daarvan een zeer vlot verlopende afzet van de producten. Rond die tijd werd echter in Slochteren (Nederland) een reusachtige aardgasbel ontdekt en dit zou ook niet zonder gevolg blijven voor de Vlaamse sierteelt. In Nederland werd er onder andere voor gekozen om aan het aardgas een hogere toegevoegde waarde te geven door onder andere de glastuinbouw uit te bouwen. Dit zorgde ervoor dat de sierteelt en de groenteteelt een hoge vlucht namen in Nederland, waarbij ook nieuwe en performante commercialisatiestructuren werden opgezet. In 1973 werd de wereld geconfronteerd met de eerste oliecrisis waarbij de glastuinbouw, en dus een groot deel van de sierteelt, geconfronteerd werd met hoge energieprijzen en dus een sterk verminderde rendabiliteit. Het is in deze periode dat de ‘onbezorgde tijden’ voor de sierteelt voorbij zijn en dat men dient af te rekenen met toenemende moeilijkheden.

2. Te harde werkers met te korte visie

Hoewel de studie nog aan de gang is kunnen toch reeds enkele elementen naar voor worden gebracht die volgens de bevoorrechte getuigen kenmerkend zijn voor de Vlaamse sierteelt. De Vlaamse siertelers, en dan vooral deze in Oost-Vlaanderen, waren vrij individualistisch en traditioneel ingesteld. Traditie dient niet te worden aanzien als
oubolligheid of het star vasthouden aan het verleden, maar eerder als een wantrouwen ten opzichte van verandering en de daarbij horende risico’s. De Vlaamse sierteler wordt gemiddeld genomen ook gekenmerkt door een korte termijnvisie. Het is een harde werker die daardoor waarschijnlijk te weinig kan plannen op langere termijn. Een aantal telers investeren nog weinig in vernieuwing omdat zij denken dat het hun tijd nog wel zal duren. Vooral in Oost-Vlaanderen was dit het geval. Tijdens de laatste decennia heeft men echter kunnen vaststellen dat er ook in andere Vlaamse provincies een toenemende belangstelling was voor de sierteelt; vooral in West-Vlaanderen en Antwerpen hebben voornamelijk boerenzonen een hogere toegevoegde waarde willen geven aan hun gronden door een sierteeltbedrijf op te starten. Dit nieuw bloed, dat in feite niet kon terugvallen op eigen ervaring of op de ervaring van hun ouders, stond meer open voor vernieuwing omdat zij van nul moesten vertrekken. Zij hebben de sierteelt een nieuw elan gegeven.

3. Onderzoek en voorlichting

Het onderzoek voor de sierteelt staat in die periode wel op een behoorlijk wetenschappelijk peil, maar de onderzoeksonderwerpen worden meestal te veel uit wetenschappelijke interesse bepaald en te weinig op basis van de noden in de praktijk. Bovendien stromen de resultaten van het onderzoek te weinig door naar de praktijk. Het onderzoek op de proeftuinen is wel beter afgestemd op de praktijk, en de oprichting van het Proefcentrum voor de Sierteelt brengt het praktijkonderzoek en de voorlichting in een stroomversnelling. De betalende voorlichting kende aanvankelijk minder succes, de Vlaamse teler vindt dit te kostelijk en is bovendien van mening dat de overheid hiervoor zou moeten instaan. Begin van de jaren 2000 heeft de Vlaamse Overheid het landbouwonderzoek doorgelicht en als gevolg hiervan kwam men tot een betere afstemming van het onderzoek op de praktijk en een betere samenwerking tussen de onderzoeksinstituties, universiteiten, hogescholen, proeftuinen en praktijkcentra.

4. Producent en handelaar

Een deel van de Vlaamse siertelers staat wel open voor het coöperatieve idee, de coöperaties zijn vooral gericht op de afzet. Deze coöperaties zijn echter gekenmerkt door kleinschaligheid waardoor ze bijna allen verdwenen zijn door te hoge werkingskosten en een niet altijd getrouwe aanvoer door de leden. Tuco en Bloemenveiling Aalst zijn verdwenen en enkel de Euroveiling blijft nog over. De vraag is of deze laatste, die zich vooral richt op de kleinhandelaars, zich voldoende zal kunnen aanpassen aan de evoluties die zich in het handelslandschap van de sierteeltproducten voordoen. De commercialisatie van de sierteeltproducten wordt door alle ondervraagde bevoorrechte getuigen als problematisch aanzien. In het algemeen is er in de relatie tussen producenten en de handelaars een aanzienlijk vertrouwensprobleem. Dit heeft ertoe geleid dat projecten in verband met de commercialisering niet verder zijn geraakt dan de tafel waarop zij ontworpen zijn. Toch blijkt dat zowel de handel als de producent vinden dat er
meer overleg moet zijn, misschien is de tijd nu gekomen om daar effectief werk van te maken.

5. Producent en consument

In zijn relatie tot de consument geeft de Vlaamse sierelter nog te veel gewicht aan zijn eigen mening. Er wordt te weinig geluisterd naar de consument. De producent bepaalt op basis van zijn ervaringen uit het verleden, nog te veel het product, de kwaliteit en de presentatie van zijn product. Het opvolgen van modetrends, het luisteren naar de consument en de handelaar die het eindproduct afzet zou een positieve bijdrage kunnen leveren. Hierbij kan ook worden opgemerkt dat ook de kleinhandelaar van de bloemenwinkel liefst een betere kennis zou hebben van zijn producten zodat de kwaliteitsinspanningen van de producent niet verloren zouden gaan in het handelskanaal dat de planten moeten afleggen tot zij bij de consument komen.

6. Wat met de sectoren?

Niet alle sierteeltsectoren hebben zich tijdens de afgelopen jaren op dezelfde wijze ontwikkeld. Voor de snijbloemen- en de knolbegoniasector heeft men een zeer sterke terugval moeten vaststellen, en de toekomst van deze sectoren is verre van rooskleurig. De kasplantenteelt, en dan vooral de sector van de verwarmde kasplanten, is sterk afgekalfd maar in deze sector hebben een aantal bedrijven zich versterkt door over te gaan op de teelt van buitengoed. De azaleasector heeft zijn omvang behouden en blijft een goed exportproduct. Het aantal bedrijven is er sterk gedaald maar door schaalvergroting werd het productievolume behouden. Boomkwekerij, perkplanten en potchrysantelen hebben zich tijdens de voorbije decennia verder ontwikkeld. Hun areaal heeft zich verder kunnen uitbreiden.

De Vlaamse sierteelt heeft tijdens de voorbije jaren, met uitzondering van enkele sectoren, sterk moeten inbinden. Er is nood aan het ontwikkelen van een visie op langere termijn. Wij hopen dat deze studie een bijdrage zal kunnen leveren aan diegenen die in de sector en daarbuiten verantwoordelijkheid dragen om te komen tot een goede visie en de uitrul ervan. De prominente rol van de Vlaamse sierteelt uit de zestiger jaren zal niet meer terugkomen, maar er is ongetwijfeld toch nog een plaats voor ons product in de toekomst.

Contactpersonen: Nicole Taragola, Adrien Saverwyns
4.3. ONDERNEMERSCHAP ALS DRIJVENDE KRACHT VOOR DUURZAME ONTWIKKELING

Duurzame ontwikkeling van de sierteeltsector vereist duurzaam ondernemerschap/management. Een belangrijke vraag hierbij is: ‘Wanneer is ondernemerschap/management duurzaam?’ In volgend artikel kom je meer te weten over de opinie van de Vlaamse ‘stakeholders’.

1. Ondernemer speelt sleutelrol in duurzame land- en tuinbouwontwikkeling

Het stimuleren van een competitieve en duurzame land- en tuinbouw is een belangrijk aandachtspunt in het huidige Vlaamse (en Europese) landbouwbeleid. Hoewel heel wat actoren betrokken zijn in het transitieproces dat moet leiden tot een duurzame land- en tuinbouw, kan gesteld worden dat de ondernemer hierin een sleutelrol speelt. Er wordt aangenomen dat het niet langer volstaat om een vakman te zijn, maar dat de ondernemers- en managementcapaciteiten steeds belangrijker worden. Duurzame land- en tuinbouwontwikkeling vereist duurzaam ondernemerschap/management. Een belangrijke vraag hierbij is: Wanneer is ondernemerschap/management duurzaam?

2. Ondernemerschap en de ‘duurzaamheidsster’ (MOTIFS)

Binnen de Eenheid L&M wordt momenteel een instrument ontwikkeld ter beoordeling van duurzame ontwikkeling van land- en tuinbouwbedrijven, de zogenaamde ‘duurzaamheidsster’ (MOTIFS). Hierin krijgen zowel de economische, ecologische als sociale aspecten de nodige aandacht. Het is duidelijk dat het integreren van deze zeer uiteenlopende aspecten heel wat ondernemers- en managementvaardigheden zal vragen van de land- en tuinbouwers. Vandaar dat duurzaam ondernemerschap en management is opgenomen als één van de hoofdthema’s binnen de duurzaamheidsster.

Het onderzoek heeft als doel om indicatoren te ontwikkelen voor het beoordelen en stimuleren van duurzaam ondernemerschap en management op Vlaamse land- en tuinbouwbedrijven. Een indicator is een instrument om een complex probleem te vereenvoudigen tot duidelijke en bruikbare informatie. Bij het ontwikkelen van een indicator is het van belang om er rekening mee te houden dat de ‘perfecte indicator’ niet bestaat, en dat je een indicator niet alleen maakt. Het ontwikkelen van een indicator is duidelijk een ‘multistakeholder’ proces.
3. **Workshop levert inzicht in belangrijke thema’s**

Als belangrijke stap in het ontwikkelen van indicatoren voor duurzaam ondernemerschap en management werd in 2009 een workshop georganiseerd, waaraan meer dan 20 ‘stakeholders’ van de Vlaamse land- en tuinbouw deelnamen. Deze ‘stakeholders’ waren zowel teelttechnische en bedrijfseconomische privé- en overheidsvoorlichters, bankadviseurs, vertegenwoordigers van land- en tuinbouworganisaties, vormingsverantwoordelijken, overheidsdiensten, onderzoekers, ..., als land- en tuinbouwers zelf. Tijdens de workshop werd ‘gebrainstormd’ over volgende twee onderzoeksfragen:

1. Welke zijn de relevante thema’s voor het beoordelen van de ondernemers- en managementcapaciteiten van land- en tuinbouwers?

2. Welke zijn relevante indicatoren voor de geselecteerde thema’s?

Op basis van een prioritiseringsproces werden uiteindelijk de vier eerstgenoemde thema’s geselecteerd, waarna voor elk van deze thema’s ‘gebrainstormd’ werd over mogelijke indicatoren. Op deze manier werd waardevolle input bekomen voor de verdere uitwerking van de indicatoren.

Foto 1: Brainstormsessie over ‘Duurzaam ondernemerschap/management’ door ‘stakeholders’ van de Vlaamse land- en tuinbouw
Foto 2: Bepaling van thema’s voor ‘Duurzaam ondernemerschap/management’ door middel van een interactief clusteringsproces

Contactpersoon: Nicole Taragola
4.4. BEÎNVLOEDEnde FACTOREn VOOR HET INTRODUCEREN VAN REDUCTietechniekEN VOOR GEWASBEsCHERMINGSmIDDELEn EN nUtRIÉNTEn DOOR VLAAMSE sierteLERs

Oordeelkundig gebruik van gewasbeschermingsmiddelen en nutriënten is van belang voor een duurzame ontwikkeling van de sierteelt. Zowel de beschikbaarheid van mogelijke reductietechnieken, hun haalbaarheid op bedrijfsniveau en de factoren die hun introductie in de Vlaamse sierteelt beïnvloeden komen hier aan bod.

1. Probleemstelling

In de land- en tuinbouwsector worden gewasbeschermingsmiddelen en nutriënten gebruikt. Deze productiemiddelen kunnen in het milieu terecht komen en daar, afhankelijk van het product en de hoeveelheid, voor problemen zorgen. Hoewel de externe druk voor een milieuvriendelijke productie lager is dan voor eetbare producten, is de reductie van het gebruik van gewasbeschermingsmiddelen en nutriënten ook van belang voor een duurzame productie van sierteeltproducten. Het doel van het onderzoek is om het inzicht te verhogen in de factoren die het inzetten van reductietechnieken voor gewasbeschermingsmiddelen en nutriënten beïnvloeden in de sierteelt, en deze te vergelijken met deze in andere tuinbouwsectoren.

2. Inventarisatie reductiemogelijkheden

In een eerste fase van het onderzoek werd een inventaris opgesteld van de reductiemogelijkheden voor het gebruik van gewasbeschermingsmiddelen en nutriënten, en dit zowel voor de sierteeltsector als voor de andere tuinbouwsectoren. Voor de sierteeltsector werd hiervoor samengewerkt met het Proefcentrum voor de Sierteelt (PCS) in Destelbergen, waarbij meer dan 80 reductiemogelijkheden werden geïnventariseerd. Voor gewasbeschermingsmiddelen gaat het zowel om preventieve maatregelen, teelttechnische maatregelen, waarneming en het gebruik van waarschuwingssystemen, andere technieken van niet-chemische bestrijding en reductietechnieken die bij chemische bestrijding gebruikt kunnen worden. Voor nutriënten zijn er in de eerste plaats de aanpassing van de teelttechnische maatregelen, de teeltplagerichte maatregelen, geleide bemesting en registratie. De resultaten van deze inventarisatie voor de sierteeltsector werden samengebracht in ILVO-Mededeling 25.
3. Selectie reductiemogelijkheden

In een tweede fase van het onderzoek werd een score toegekend aan elk van de geïnventariseerde technieken. Dit gebeurde via workshops met experten per subsector, waarbij rekening gehouden werd met de mate waarin de techniek kon bijdragen tot een reductie van het gebruik van gewasbeschermingsmiddelen of nutriënten, evenals met de praktische en economische haalbaarheid van de techniek op bedrijfsniveau. Op basis van de toegekende score werden voor elke subsector een 10-tal technieken geselecteerd. Deze technieken vormden de basis voor verder onderzoek.

4. Enquêtering bedrijven

In een derde onderzoeksfase werd een uitgebreide enquête uitgevoerd op 80 gespecialiseerde sierteeltbedrijven, waaronder 23 potplantenbedrijven, 17 azaleabedrijven, 15 snijbloemenbedrijven, 9 boomkwekerijen, 6 begoniatrondrijven en 11 bedrijven met overige sierteelt (voornamelijk perkplantenbedrijven). Deze enquête werd ook uitgevoerd op 74 glasgroentebedrijven, 44 bedrijven met groenteteelt in openlucht en 50 fruiteeltbedrijven, resulterend in een totale steekproef van 248 tuinbouwbedrijven. Deze enquête had volgende doelstellingen:

- Nagaan van de huidige penetratieraden van de onderzochte reductietechnieken op de tuinbouwbedrijven;
- Meer inzicht krijgen in de mening van de tuinders zelf met betrekking tot de onderzochte technieken: nagaan en kwantificeren van tevredenheid, belang van mogelijke knelpunten, haalbaarheid en intenties voor toekomstige toepassing;
- Een eerste beeld vormen van de houding en interesse van tuinbouwers t.o.v. mogelijke stimuleringsmaatregelen voor elk van de onderzochte reductiemogelijkheden;
- Nagaan welke factoren invloed hebben op het introduceren van reductietechnieken voor gewasbeschermingsmiddelen en nutriënten door tuinbouwers. Hierbij is het belangrijk te achterhalen waarom bepaalde bedrijfsleiders wel grote inspanningen doen om te komen tot een vermindering van het nutriënten- en gewasbeschermingsmiddelengebruik en anderen niet.

5. Beïnvloedende factoren

Voor het inschatten van de beïnvloedende factoren voor het invoeren van reductietechnieken voor gewasbeschermingsmiddelen en nutriënten werd een conceptueel model ontwikkeld op basis van literatuuronderzoek. Op basis van het conceptueel model werd de invloed onderzocht van biografische karakteristieken (leeftijd, formele opleiding en aanvullende cursussen), attitudes (attitude ten aanzien van openheid, risico en milieuvriendelijke productie) en communicatiedrag (deelname aan seminaries, demonstraties, het raadplegen van persoonlijke en schriftelijke
informatiebronnen, lidmaatschap van studieclubs, enz.) van de bedrijfsleider. Er werd verwacht dat de invloed van het communicatiegedrag beïnvloed zou worden door de kennisstructuur van de verschillende sectoren, met een lagere invloed in een sector met een gesloten kennisstructuur (sierteeltsector) dan in een sector met een open kennisstructuur (groenteteelt- en fruitteeltsector). Ook de invloed van de structuurkenmerken van het bedrijf op de introductie van reductietechnieken werd nagegaan.

6. Conclusie

De bekomen resultaten tonen aan dat de attitude ten aanzien van milieu vriendelijke productie belangrijk is in het verklaren van de introductie van reductietechnieken voor het gebruik van gewasbeschermingsmiddelen en nutriënten in de sierteelt. Geen significante invloed werd gevonden voor de biografische karakteristieken en het communicatiegedrag van de bedrijfsleider en de structuurkenmerken van het bedrijf. In de groenteteeltsector, die gekenmerkt wordt door een open kennisstructuur, was het communicatiegedrag een belangrijke beïnvloedende factor. Voor de fruitteeltsector werd geen significante invloed van de onderzochte factoren gevonden. De resultaten van het onderzoek tonen aan dat het stimuleren van de introductie van reductietechnieken moeilijker zal zijn in de sierteeltsector, waar een verandering in attitude van de teler vereist is.

7. Referenties

Contactpersoon: Nicole Taragola
4.5. Het internetgedrag van Vlaamse tuinbouwers: beïnvloedende factoren

Het gebruik van internet biedt heel wat mogelijkheden voor het uitwisselen van informatie en het vereenvoudigen van transacties. Hoe de Vlaamse tuinbouwers hiermee omgaan en welke factoren hun internetgedrag beïnvloeden komt u hier te weten.

1. Probleemstelling

Hoewel de laatste ontwikkelingen op het vlak van ICT heel wat mogelijkheden bieden voor het ondersteunen van de bedrijfsvoering van tuinbouwbedrijven, kan worden vastgesteld dat deze niet altijd optimaal worden benut. Teneinde hierin meer inzicht te bekomen werd een enquête over het ICT-gebruik uitgevoerd bij 208 Vlaamse professionele tuinbouwbedrijven. De steekproef bestaat uit 62 sierteeltbedrijven, 64 glasgroentebedrijven, 29 bedrijven met groenten in lucht en 53 bedrijven met blijvende teelt (o.a. boomkwekerijen, fruitbedrijven). Speciale aandacht wordt besteed aan het internetgebruik. Hierbij wordt de invloed nagegaan van de persoonskarakteristieken van de bedrijfsleider (biografische en sociale karakteristieken, communicatiegedrag) en de bedrijfsgrootte op het gebruik van vijf groepen internettoepassingen: algemene toepassingen, algemene management informatie, gespecialiseerde management informatie, informatie over outputprijzen en opbrengsten en ‘e-commerce’.

2. Gebruikersfrequentie van internet

De resultaten van de enquête tonen aan dat 64 % van de tuinbouwbedrijven met internetgebruik voor bedrijfsdoeleinden het minder dan 3 uren per week gebruiken (laag gebruik), 17 % tussen 3 en 5 uren (middelmatig gebruik) en 19 % meer dan 5 uren per week (hoog gebruik). Er wordt geen statistisch significant verband gevonden tussen de frequentie van internetgebruik enerzijds en de persoonskarakteristieken van de bedrijfsleider (leeftijd, opleiding) en de bedrijfsgrootte op het gebruik van vijf groepen internettoepassingen: algemene toepassingen, algemene management informatie, gespecialiseerde management informatie, informatie over outputprijzen en opbrengsten en ‘e-commerce’ anderzijds.

3. Internettoepassingen

De gemiddelde Vlaamse tuinbouwer maakt weinig gebruik van internettoepassingen. Een belangrijke uitzondering hierop is internetbankieren, hetgeen heel wat voordelen biedt op het vlak van tijd- en kostenbesparing en gebruiksgemak. Er wordt echter weinig gebruik gemaakt van internet voor het opzoeken van informatie. De belangrijkste informatie die
Wordt geraadpleegd via het internet is informatie over marktprijzen, opbrengsten van outputs en weersvoorspellingen. Meer dan de helft van de ondervraagden consulteert nooit websites van de overheid of van onderzoeksinstituties. Een minderheid maakt gebruik van ‘e-commerce’ voor de aankoop van benodigdheden of de verkoop van hun producten. De meerderheid van de ondervraagde tuinbouwers heeft geen idee of er voldoende informatie beschikbaar is op het internet voor de verschillende toepassingen. 30% van de respondenten zou bereid zijn om te betalen voor websites waar ze hun eigen producten kunnen adverteren, lokale weersvoorspellingen kunnen raadplegen of gedetailleerd advies kunnen vinden met betrekking tot hun eigen producten.

4. Beïnvloedende factoren

Internetgebruik kan enkel gestimuleerd worden indien men weet welke factoren het gebruik van de verschillende internettoepassingen beïnvloeden. Teneinde de invloed naar te gaan van de persoonskenmerken van de bedrijfsleider en de bedrijfskenmerken werden deze gereduceerd tot vijf dimensies door middel van categorische principale componentenanalyse (CATPCA), resulterend in de dimensies ‘open bedrijfsleider die actief zoekt naar informatie’, ‘toekomstgerichtheid : jonge leeftijd, hoge opleiding, aanwezigheid van opvolger’, ‘open zijn voor risico’s en een positieve attitude ten aanzien van milieuvriendelijke productie’, ‘zoeken naar specifiek bedrijfsadvies’ en ‘landbouw- of tuinbouwopleiding, aangevuld met bijkomende cursussen’.

5. Resultaten

De resultaten van het onderzoek tonen aan dat de persoons- en bedrijfskarakteristieken niet even belangrijk zijn voor elke toepassing. De dimensie ‘open bedrijfsleider die actief zoekt naar informatie’ vertoont een significante positieve invloed voor alle onderzochte internettoepassingen, met uitzondering van ‘e-commerce’. Men kan veronderstellen dat bedrijfsleiders met een open communicatiedrang ervan overtuigd zijn dat het zoeken naar informatie belangrijk is voor het nemen van betere managementbeslissingen. De dimensie ‘toekomstgerichtheid’ vertoont een significant positief effect op het gebruik van algemene toepassingen, zoals internetbankieren en het raadplegen van weersvoorspellingen. Deze dimensie is ook zwak significant voor het gebruik van ‘e-commerce’. Dit betekent dat de kans voor het gebruik van deze toepassingen hoger is voor jonge en betere opgeleide bedrijfsleiders of bedrijven met een opvolger. In tegenstelling tot het opzoeken van informatie via internet zijn deze algemene internettoepassingen meer gerelateerd aan de dagelijkse of operationele activiteiten van de bedrijfsleider. Men kan aldus verwachten dat de positieve invloed van de dimensie ‘toekomstgerichtheid’ te maken heeft met het feit dat jonge en betere opgeleide bedrijfsleiders meer vertrouwd zijn met het gebruik van computers. De dimensie ‘open zijn voor risico’s en een positieve attitude ten aanzien van milieuvriendelijke productie’ heeft een significant positieve invloed op het gebruik van ‘e-commerce’. De dimensie
‘landbouw- of tuinbouwopleiding, aangevuld met bijkomende cursussen’ vertoont geen significante invloed op het gebruik van de onderzochte internettoepassingen, behalve op het gebruik van ‘e-commerce’. De positieve impact van opleiding komt hier op de voorgrond. Voor wat betreft de bedrijfskarakteristieken wordt een positieve invloed gevonden van de bedrijfsgrootte op het gebruik van internet voor het opzoeken van gespecialiseerde managementinformatie, samen met een zwak significante invloed op het gebruik van ‘e-commerce’. Er kan verondersteld worden dat grotere bedrijven een groter voordeel hebben van het gebruik van deze internettoepassingen omwille van schaaleffecten.

6. **Conclusie : attituden bedrijfsleider spelen grote rol**

Er kan besloten worden dat de attituden van de bedrijfsleider een grote rol spelen voor het gebruik van de meeste internettoepassingen. Bedrijfsleiders met een open communicatiegedrag hebben een grotere kans om internet te gebruiken voor het opzoeken van informatie. Uit het onderzoek blijkt dat heel wat tuinbouwers nog geen inzicht hebben in de mogelijkheden van internetgebruik voor het creëren van waarde voor hun bedrijf. Ontwikkeling van menselijk kapitaal lijkt dan ook essentieel om dit inzicht te vergroten, en het internetgebruik te stimuleren. Daartoe zal het van belang zijn om de nodige opleidingsmogelijkheden te voorzien. Zowel basisopleidingen als meer gevorderde opleidingen zijn hierbij van belang. Ook het ontwikkelen van een portaalwebsite voor de Vlaamse tuinbouw wordt gezien als een mogelijke stimulans voor de toekomst.

7. **Referenties :**

Contactpersoon: Nicole Taragola
1. Probleemstelling

Glastuinbouwzones zijn niet alleen co-locaties van glastuinbouwbedrijven, het zijn ook industrieel-ecologische projecten waar tuinders onderling of met andere industrieën samenwerken voor meer economische en ecologische duurzaamheid, vb. door uitwisseling van restwarmte of gezamenlijk energiebeheer. De vorming van zulke zones is bijgevolg niet eenvoudig.

Ondanks goede intenties, veel planning en overleg tussen verschillende actoren, verloopt de realisatie van deze projecten traag en moeizaam: regelgeving is divers en complex en het vergunningentraject is lang. Een glastuinbouwzone in spe doorloopt bovendien vele fases, bijvoorbeeld de keuze van een locatie, grondverwerving, aanleg van infrastructuur, het zoeken van tuinders, opstarten van eco-efficiënte samenwerking etc.

Al deze processen vragen overleg met telkens verschillende actoren met eigen meningen, overtuigingen en doelen. Deze actoren zijn bijvoorbeeld tuinders, landbouwers, industrie, infrastructuurbeheerders, kennisinstituten, de lokale bevolking, het beleid etc… En niet al deze groepen van actoren zijn homogeen: “Het beleid” bestaat vb. uit verschillende beleidsniveaus en uit verschillende departementen en ministeries die verschillende doelen nastreven. Dit maakt het realiseren van een glastuinbouwzone tot het beheer van een complexe wirwar van actoren en processen.

Dit project wil hier inzicht in krijgen om dan beleidsaanbevelingen te kunnen geven om het procesverloop te verbeteren of te versnellen. Daarom focust dit onderzoek zich op complexe veranderingsprocessen en wordt er onderzocht hoe meningen, overtuigingen en doelen van de verschillende deelnemers invloed hebben op deze processen.

2. Resultaten

Om dit te bestuderen wordt er gewerkt met case studies in Vlaanderen, maar ook in Nederland, omdat men daar ook glastuinbouwzones ontwikkelt voor zowel groenteteelt als sierteelt. Concreet werden er eerst een aantal interviews gedaan in Nederland, daarna volgden discussiegroepen in Vlaanderen en ten slotte is er een diepe-onderzoek van enkele gebieden in Nederland en Vlaanderen.
3. Verkennende Interviews

De eerste fase van het onderzoek bestond uit een reeks verkennende interviews in Nederland. Deze leerden ons dat de verschillende actoren andere definities van glastuinbouwclusters hebben. Sommigen legden de nadruk op een betere economische performantie door nabijheid van anderen, anderen legden de nadruk op kostenreductie door samenwerking en nog andere benadrukten de ruimtelijke nabijheid. Wat processen betreft gaven zij een belangrijke rol voor het beleid aan. Andere succes- of faalfactoren zijn toegang tot land, de manier waarop er samengewerkt wordt, aanwezigheid van een procestrekker en draagvlak bij alle stakeholders.

4. Discussiegroepen met tuinders en beleid

In een tweede fase van het onderzoek werden een aantal van de thema’s die tijdens de interviews naar voren kwamen, opgenomen in discussiegroepen met Vlaamse tuinders en beleidsmakers: “Ruimte voor glastuinbouw in de toekomst: Uw mening telt!” Drie groepen dachten na over verschillende aspecten van ruimte: clustering, maatschappelijk draagvlak en beleid.

De eerste groep rond clustering zocht een antwoord op de vraag: “Is de vorming van glastuinbouwzones enkel een ruimtelijk gegeven?” Een korte brainstorm, bracht de groep rond volgende belangrijke thema’s rechtstreeks gerelateerd aan clustering: ruimte, samenwerking, maatschappelijk draagvlak, energie, infrastructuur, milieu, risico en arbeidsmarkt. De 4 eerste thema’s werden belangrijker gevonden dan de 4 laatste.

Een tweede groep dacht na over hoe we maatschappelijk draagvlak kunnen creëren voor glastuinbouw. De ideeën kunnen worden ingedeeld in 4 categorieën: communicatie, sociale meerwaarde, inspanningen van de sector en kennis van de sector bij het grote publiek. “Elke troef die we uitspelen wordt pas bekend als we hem in de kijker zetten. En dat gebeurt vaak niet genoeg.”

De derde groep rond ruimtelijk beleid ging op zoek naar het beleidsniveau waar ruimtelijke problematiek in de glastuinbouw best aangepakt kan worden. Het ideale beleidsniveau zou volgende eigenschappen moeten hebben: communicatie tussen beleid en telers, standvastigheid, kennis van zaken, een geïntegreerde termijnvisie, beslissingsbevoegdheid, financiële middelen en neutraliteit/objectiviteit van de beleidsmakers. Het gewest en de provincie zijn volgens de groep de meest geschikte niveaus om een beleid uit te stippen. Om echter alles in goede banen te leiden moet er een geïntegreerd beleid zijn, waar alle beleidsniveaus aan bod komen, en op elkaar afgestemd zijn. Hiervoor is overleg nodig.

Uit de groepen kwamen ook een aantal suggesties voor de planning van een nieuw tuinbouwproject. Met een goed ruimtelijk beleid kan men nog maatschappelijk draagvlak zoeken door te communiceren van in het begin tot zelfs als de bedrijven er al zijn, door infovergaderingen, door actiecomités te betrekken bij grote projecten, door inspraak voor
burgers bij het aanduiden of inrichten van een tuinbouwzone en door dialoog met actiegroepen. Ze blijken niet per se contra, ook niet pro, maar een goede communicatie kan er misschien voor zorgen dat ze niet protesteren, terwijl er altijd een negatieve reactie komt als hun mening niet gevraagd word.

5. Case studie onderzoek
De derde fase van het onderzoek spitst zich toe op twee gebieden in Nederland en twee in Vlaanderen, waar glastuinbouwzones gepland of gerealiseerd worden. De twee eerste fasen van het onderzoek gaven reeds een aantal aangrijpingspunten voor het begrijpen van complexe veranderingsprocessen en de invloed van actoren op de processen. Dit wordt nu in de diepte uitgewerkt aan de hand van interviews, analyse van beleidsdocumenten, terreinbezoeken en projectopvolging. Er werd hiervoor reeds een theoretisch kader ontwikkeld, maar de praktische resultaten zijn nog niet beschikbaar.

6. Referenties

presentation. the 12th Congress of the EAAE: People, Food and Environments: Global Trends and European Strategies. August 26-29, Ghent, Belgium

Foto: Sfeerbeeld van de discussienamiddag: “Ruimte voor glastuinbouw in de toekomst? Uw mening telt!”

Contactpersoon: Veerle Verguts
4.7. Maatschappelijke aanvaardbaarheid van grootschalige glastuinbouwclusters

Het ontwikkelen van grootschalige glastuinbouwclusters is één van de mogelijke sporen om de vernieuwing van de glastuinbouw te stimuleren. Een belangrijke vraag hierbij is welke factoren de maatschappelijke aanvaardbaarheid van deze clusters beïnvloeden.

De voorbije jaren heeft de land- en tuinbouw heel wat structurele veranderingen ondergaan. Schaalvergroting is hier een belangrijk voorbeeld van. In andere sterke glastuinbouw landen zoals Nederland en Spanje worden glastuinbouwvestigingen steeds groter. Nieuwe vestigingen zijn er bijna uitsluitend groter dan 3 ha en bedrijven van 30 ha en groter zijn er zeker geen uitzondering meer (Badgery-Parker, 2001). Als de Vlaamse glastuinbouwsector concurrentieel wil blijven op de nationale en internationale markt zijn schaalvergroting en modernisering dus onmisbaar. Om dit probleem aan te pakken heeft de Vlaamse overheid in 2003 een Actieplan voor de glastuinbouw opgesteld (MVG, 2003). Een deel van dit plan is gewijd aan de problematiek van de ruimtelijke ordening. Er werden drie mogelijke sporen voorgesteld om de vernieuwing van de glastuinbouw te stimuleren: een toetsingskader voor glastuinbouw op gemeentelijk niveau, de ontwikkeling van macrozones en de ontwikkeling van clusters. Men spreekt dan ook van het zogenaamde driesporenbeleid.

Eén van de sporen waar heel wat aandacht aan besteed wordt is het ontwikkelen van zogenaamde glastuinbouwclusters. In dergelijke clusters worden een aantal grote glastuinbouw bedrijven gegroepeerd. De bedoeling is dat voor de individuele bedrijven een meerwaarde gecreëerd wordt door samenwerking. Hierbij denkt men onder andere aan samenwerking op vlak van energie, water, transport, aankoop en afzet, parkmanagement enz. Bovendien wordt eraan gedacht om bij de ontwikkeling van clusters de locatie zodanig te kiezen dat er gewerkt kan worden met restwarmte of rest-CO₂ afkomstig uit nabijgelegen industriegebieden.

Ondanks het enthousiasme van velen voor de ontwikkeling van dergelijke clusters blijkt er ook heel wat maatschappelijk protest te bestaan (figuur 1).
Figuur 1. Voorbeeld van protest tegen de komst van grootschalige glastuinbouw in de Antwerpse Kempen.

Als reden voor dit protest wordt vaak de visuele verstoring en het verlies van open ruimte aangehaald. Tijdens voorgaand onderzoek rond de inplanting van grootschalige glastuinbouw (Rogge et al., 2008) kregen we echter het vermoeden dat er veel meer achter dit protest schuilgaat dan enkel het visuele. De belangrijkste doelstelling van dit onderzoek was dan ook een inzicht te krijgen in de onderliggende oorzaken voor dit protest. Om dit inzicht te verkrijgen leek een kwalitatieve onderzoeksmethode op basis van ‘Grounded Theory’ (Strauss and Corbin, 1998) ons het meest geschikt.

Figuur 2. Schema met de onderliggende redenen voor het maatschappelijk protest tegen grootschalige glastuinbouw.

Op basis van dit schema wordt het duidelijk dat het protest tegen de ontwikkeling van glastuinbouw clusters niet door 1 enkele factor kan verklaard worden. Een veelheid van factoren ligt aan de basis van de bezorgdheid over de ontwikkeling van glastuinbouw clusters. Een deel van deze factoren heeft te maken met het algemeen waardepatroon dat leeft in onze maatschappij. Zo heeft men het bijvoorbeeld moeilijk met clusters omdat deze afwijken van het familiebedrijf, wat het traditionele model voor vele land- en tuinbouw bedrijven is in Vlaanderen. Anderzijds zijn er heel wat factoren die te maken hebben met de mogelijke hinder die men op een bepaalde locatie (al dan niet terecht) verwacht. Deze groep factoren zouden we kunnen groeperen onder de noemer NIMBY (Not In My BackYard). Vervolgens zijn er een aantal factoren die te maken hebben met de markt. Er bestaan vooral nogal wat spanningen tussen grote en kleine bedrijven. Waarbij de kleinere bedrijven schrik hebben dat ze zullen weggeconcurreerd worden door de grotere. Tenslotte zijn er ook nog structurele moeilijkheden bij de vergunningsprocedure die ervoor zorgen dat de ontwikkeling van clusters niet altijd van een leien dakje verloopt.

Het bovenstaande schema geeft ons inzicht in de onderliggende redenen voor het protest tegen glastuinbouw clusters. Het toont aan dat het om een complex probleem gaat dat sterk uiteenlopende oorzaken kent. Indien het beleid de aanvaardbaarheid van clusters wil verhogen zal ze op elk van deze terreinen maatregelen moeten nemen.
Meer lezen?

Contactpersoon: Elke Rogge
Verantwoordelijke uitgever:

Instituut voor Landbouw- en Visserijonderzoek

Directie

Burgemeester Van Gansberghelaan 96
B-9820 Merelbeke

Tel. 09 272 25 00

Website: http://www.ilvo.vlaanderen.be

Deze publicatie is te verkrijgen bij:

ILVO-Communicatie

Tel. 09 272 25 28

E-mail: communicatie@ilvo.vlaanderen.be