The influence of a different fatty acid profile on the crystallization of milk fat as measured by pNMR, DSC and XRD

K. Smet, J. De Block, J. Wouters, L. Herman, K. Raes, K. Dewettinck and K. Coudijzer
Milk fat (1)

- Importance: 25% of total fat intake (Belgium)

- Major fatty acid composition:

<table>
<thead>
<tr>
<th>Milk fat</th>
<th>%</th>
<th>Milk fat</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10:0</td>
<td>2.99</td>
<td>C18:1c9</td>
<td>20.1</td>
</tr>
<tr>
<td>C12:0</td>
<td>4.03</td>
<td>C18:2c9c12</td>
<td>1.19</td>
</tr>
<tr>
<td>C14:0</td>
<td>9.30</td>
<td>C18:3c9c12c15</td>
<td>0.271</td>
</tr>
<tr>
<td>C16:0</td>
<td>27.7</td>
<td>C18:1t10-11</td>
<td>1.83</td>
</tr>
<tr>
<td>C18:0</td>
<td>8.94</td>
<td>C18:2c9t11</td>
<td>0.675</td>
</tr>
</tbody>
</table>

Changing fatty acid composition by changing the feed composition
Milk fat (2)

- Enriching milk fat with unsaturated fatty acids
 - More sensitive to oxidation
 - Changed physical properties of dairy products
 - Interfering in production process
Milk fat (2)

- Enriching milk fat with unsaturated fatty acids:
 - More sensitive to oxidation
 - Changed physical properties of dairy products
 - Cold-spreadability of butter (e.g. Baer et al. (2001). J. Dairy Sci., 84:345-353)
 - Softer texture of butter, yoghurt, ice cream and cheese (e.g. Chen et al. (2001). J. Agr. Food Chem., 52:3422-3428)
Milk fat (2)

- Enriching milk fat with unsaturated fatty acids
 - More sensitive to oxidation
 - Changed physical properties of dairy products
 - Interfering in production process
 - Decreased viscosity of ice cream mix (Gonzalez et al. (2003). J. Dairy Sci. 86:70-77)
Milk fat (2)

- Enriching milk fat with unsaturated fatty acids
 - More sensitive to oxidation
 - Changed physical properties of dairy products
 - Interfering in production process

- Aim of the experiment:
 - Investigating the influence of a more unsaturated fatty acid composition on the crystallization behaviour of milk fat
Setup of the experiment (1)

- Production of milk with a different fatty acid profile

<table>
<thead>
<tr>
<th>Fatty acids</th>
<th>Control (g/100 g FAME)</th>
<th>Linseed (g/100 g FAME)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEED SFA</td>
<td>32.59</td>
<td>10.66</td>
</tr>
<tr>
<td>MUFA</td>
<td>39.28</td>
<td>17.63</td>
</tr>
<tr>
<td>PUFA</td>
<td>28.08</td>
<td>71.71</td>
</tr>
<tr>
<td>n-6</td>
<td>24.48</td>
<td>18.99</td>
</tr>
<tr>
<td>n-3</td>
<td>3.6</td>
<td>52.71</td>
</tr>
<tr>
<td>n-6/n-3</td>
<td>6.80</td>
<td>0.36</td>
</tr>
<tr>
<td>P/S</td>
<td>2.07</td>
<td>8.38</td>
</tr>
</tbody>
</table>

- Isolation of milk fat with BDI method

<table>
<thead>
<tr>
<th>Fatty acids</th>
<th>C milk (g/100 g FAME)</th>
<th>U milk (g/100 g FAME)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFA</td>
<td>71.8</td>
<td>61.3 \downarrow</td>
</tr>
<tr>
<td>MUFA</td>
<td>25.3</td>
<td>33.4 \uparrow</td>
</tr>
<tr>
<td>PUFA</td>
<td>2.92</td>
<td>5.28 \uparrow</td>
</tr>
<tr>
<td>LA</td>
<td>1.30</td>
<td>1.67</td>
</tr>
<tr>
<td>LNA</td>
<td>0.38</td>
<td>1.08</td>
</tr>
<tr>
<td>Total CLA</td>
<td>0.71</td>
<td>1.86</td>
</tr>
<tr>
<td>n-6/n-3</td>
<td>2.98</td>
<td>1.55 \downarrow</td>
</tr>
</tbody>
</table>
Crystallization behaviour

- SFC profile (pNMR)
- Melting profile (DSC)
- Isothermal crystallization behaviour
 - Mechanisms: - one-step crystallization: 22°C
 - two-step crystallization: 5°C
 - Techniques: - pNMR
 - XRD
SFC profile

≠ SFC: 13.5%: - storage temperature of butter, cream
- ripening temperature of ice cream

≠ SFC: 4.3%: consumption temperature

Solid fat content (%)

Temperature (°C)

Control milk fat
Unsaturated milk fat

ILVO – Technology and Food
http://www.ilvo.vlaanderen.be/
Temperature profile:

- Isothermal: 80°C (15min)
- -0.5°C/min until -50°C
- Isothermal - 50°C (5min)
- +5°C/min until 80°C

= melting curve
DSC: melting profile

<table>
<thead>
<tr>
<th></th>
<th>C AMF (%)</th>
<th>U AMF (%)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMT</td>
<td>40.39</td>
<td>25.86</td>
<td>0.002</td>
</tr>
<tr>
<td>MMT</td>
<td>31.42</td>
<td>26.74</td>
<td>0.057</td>
</tr>
<tr>
<td>LMT</td>
<td>28.19</td>
<td>47.38</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Temperature (°C):
-40 -20 0 20 40 60 80

Heat flow (W/g):
-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

-10°C < MMT < 20°C

< 10°C: LMT

> 20°C: HMT
Isothermal pNMR (22°C)

One-step crystallisation

\(\text{SFC}_{\text{max}} = 14.7\% \)

\(\text{SFC}_{\text{max}} = 8.72\% \)
Isothermal pNMR (5°C)

Two-step crystallisation

SFC_{int} = 28.2%

SFC_{int} = 42.3%

SFC_{max} = 57.2%

SFC_{max} = 45.3%
Wide Angle X-Ray Diffraction

- Information about lateral chain packaging

Hexagonal α
Orthorhombic β'
Triclinic β
WAXD Control AMF (22°C)

\[\beta' \]
\[(4.25 + 3.82 \text{ Å})\]

\[\alpha \]
\[(4.12 \text{ Å})\]

WAXD Unsaturated AMF (22°C)

\[\beta' \]
\[(4.28 + 3.83 \text{ Å})\]

WAXD Control AMF (5°C)

\[\beta' \]
\[(4.25 + 3.82 \text{ Å})\]

\[\alpha \]
\[(4.12 \text{ Å})\]

WAXD Unsaturated AMF (5°C)

\[\alpha \]
\[(4.12 \text{ Å})\]

\[\beta' \]
\[(3.82 \text{ Å})\]
Conclusion

- Crystallization behaviour characterized with:
 - pNMR
 - DSC
 - XRD

- Knowledge will be used for the production of dairy products with a more unsaturated fatty acid composition
This work is the result of a cooperation of:

Unit of Technology and Food
Institute of Agricultural and Fisheries Research
Melle, Belgium
http://www.ilvo.vlaanderen.be

Laboratory of Food Technology and Engineering
Ghent University
Ghent, Belgium
http://www.foodscience.ugent.be/technology

Groupe de chimie physique théorique et structurale
University of Namur
Namur, Belgium